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STRESS, STRAIN AND SIGN CONVENTIONS

1 STRESS, STRAIN AND SIGN CONVENTIONS

OptumG2 makes use of a global Cartesian coordinate system with x and y being the horizontal and
vertical axes respectively (see Figure 1). Rotations, θ, are counted positive counter-clockwise.

The sign conventions used in OptumG2 are consistent with those used in most of the solid me-
chanics literature. Stresses are negative in compression and positive in tension (see Figure 1.1).
Similarly, negative normal strains correspond to compaction and positive normal strains correspond
to dilation.

OptumG2 assumes plane strain conditions. As such, there are four potentially non-zero stress
components:

(σx , σy ,σz , τxy , 0, 0) (1.1)

and three potentially non-zero strain components:

(εx , εy , 0, γxy , 0, 0) (1.2)

However, the theory summarized in the following sections is valid in the general three-dimensional
setting.

The principal stresses are ordered as:
σ1 ≤ σ2 ≤ σ3 (1.3)

That is, σ1 is the most compressive principal stress while σ3 is the least compressive. In many cases,
the intermediate principle stress, σ2, will coincide with the out-of-plane stress σz .
Similarly, the principal strains are ordered according to:

ε1 ≤ ε2 ≤ ε3 (1.4)

such that ε1 and ε3 are, respectively, the most and least compressive principal strains. Under
plane strain conditions, the intermediate principal strain often coincides with the out-of plane strain,
ε2 = εz = 0.

σy

σx

τxy

x

y

σz

z

θ

Figure 1.1: Global coordinate system and sign conventions.
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STRESS, STRAIN AND SIGN CONVENTIONS

1.1 Effective stress

For fluid saturated media, stress-strain relationships are usually formulated with respect to effective
stresses. These are related to the total stresses by

σ′ = σ −mpf (1.5)

where σ′ are the effective stresses, σ are the total stresses, pf is the fluid pressure (negative in
compression) and m = (1, 1, 1, 0, 0, 0)T. The fluid pressures may be given a priori (for example in
terms of the hydrostatic pressure distribution underneath the water table) or they may be generated
in response to mechanical loading (for example in connection with rapid loading of fine grained
materials). The role of pore pressures in soil mechanics is covered in detail in Section 4 of the
Theory Manual.

8



ELASTICITY

2 ELASTICITY

For elastic materials the strains and effective stresses are related to each other in a one-to-one
manner, i.e. the strains generated through loading along one stress path will be recovered when
unloading along the same stress path. Assuming linear elasticity, the relation between the strains
and the effective stresses can be expressed as:

εe = Cσ′ ⇐⇒ σ′ = Dεe (2.1)

where C is the compliance modulus and D is the stiffness modulus.

2.1 Isotropic elasticity

The most common assumption regarding the stiffness of geomaterials is that of isotropy, i.e. that the
properties are the same in all directions, e.g. vertically and horizontally. In this case, the compliance
and stiffness moduli, may be expressed either in terms of Young’s modulus E and Poisson’s ratio ν
or in terms of bulk modulus K and shear modulus G . The compliance modulus is given by

C =
1

E



1 −ν −ν
−ν 1 −ν
−ν −ν 1

2(1 + ν)

2(1 + ν)

2(1 + ν)


(2.2)

or equivalently by:

C =



1
9
K−1 + 1

3
G−1 1

9
K−1 − 1

6
G−1 1

9
K−1 − 1

6
G−1

1
9
K−1 − 1

6
G−1 1

9
K−1 + 1

3
G−1 1

9
K−1 − 1

6
G−1

1
9
K−1 − 1

6
G−1 1

9
K−1 − 1

6
G−1 1

9
K−1 + 1

3
G−1

G−1

G−1

G−1


(2.3)

where

K =
E

3(1− 2ν)
, G =

E

2(1 + ν)
(2.4)

The stiffness modulus is given by:

D =
E

(1 + ν)(1− 2ν)



1− ν ν ν

ν 1− ν ν

ν ν 1− ν
1
2
(1− 2ν)

1
2
(1− 2ν)

1
2
(1− 2ν)


(2.5)

9



ELASTICITY

or equivalently by:

D =



K + 4
3
G K − 2

3
G K − 2

3
G

K − 2
3
G K + 4

3
G K − 2

3
G

K − 2
3
G K − 2

3
G K + 4

3
G

G

G

G


(2.6)

The relations between E , ν, K , and G are summarized in the table below.

E = ν = K = G =

(E , ν) E ν
E

3(1− 2ν)

E

2(1 + ν)

(K ,G )
9KG

3K + G
K − 2G

3
K G

Table 2.1: Relation between elastic parameters.

2.1.1 Undrained conditions

Under undrained conditions, the relation between the elastic strains and the total pressures can be
shown to be given by (see the Theory Manual)

εe = Cuσ (2.7)

where

Cu =
1

Eu



1 − 1
2

− 1
2

−1
2

1 − 1
2

−1
2

− 1
2

1

3

3

3


=

1

3G



1 − 1
2

− 1
2

−1
2

1 − 1
2

−1
2

− 1
2

1

3

3

3


where

Eu =
3E

2(1 + ν)
(2.8)

is the undrained Young’s modulus.

This is the elastic law used for the Tresca material (Set A requiring input of Eu and Set B requiring
input of G ).
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ELASTICITY

2.2 Anisotropic elasticity

As a result of their deposition, natural soils often display cross-anisotropy with the elastic parameters
differing between the vertical and horizontal directions. It may be shown that the most general cross-
anisotropic elasticity model will involve a total of five parameters. Alternatively, a simplified model that
accounts for the basic features of the anisotropy may be used. One such model has been proposed
by Graham and Houlsby (1983). In addition to two elasticity parameters this model involves one
additional parameter that acts as a measure of the anisotropy. The stress-strain relation of the
Graham-Houlsby may be expressed as:

εxx

εyy

εzz

γxy

γyz

γzx


=

1

Eyy



1/α2 −νxy −νxy/α

−νxy 1 −νxy
−νxy/α −νxy 1/α2

2(1 + ανxy )/α

2(1 + ανxy )/α

2(1 + ανxy )/α
2





σ′
xx

σ′
yy

σ′
zz

τxy

τyz

τzx


where Eyy is the Young’s modulus measured in the y -direction, νxy is the Poisson’s ratio in the x-
direction to strain applied in the y -direction, and α is an anisotropy parameter. For thermodynamic
consistency, it may be shown that the Poisson’s ratio should be limited to

−1 ≤ ανxy ≤ 1
2

(2.9)

Alternatively, the above relation may be written as:

εxx

εyy

εzz

γxy

γyz

γzx


=

1

Eyy



1/α2 −νxy −νxy/α

−νxy 1 −νxy
−νxy/α −νxy 1/α2

Eyy/Gxy

Eyy/Gxy

Eyy/Gxx





σ′
xx

σ′
yy

σ′
zz

τxy

τyz

τzx


where

Gxy =
2(1 + ανxy )Eyy

α
, Gxx =

2(1 + ανxy )Eyy

α2
(2.10)

The anisotropy parameter, α, can be related to the Young’s moduli as well as the shear moduli in the
different directions:

α =

√
Exx

Eyy
=

Gxx

Gxy
(2.11)

where Exx and Eyy are the Young’s moduli measured in the two directions, Gxx is the shear modulus
in any plane perpendicular to the y -direction and Gxy is the shear modulus in any plane parallel to
the y -direction.
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3 ELASTOPLASTICITY

OptumG2 makes extensive use of the theory of elastoplasticity in the formulation of constitutive
models. In standard laboratory tests such as triaxial compression tests, these models imply an
initially elastic response at low levels of loading. This is followed by the accumulation of plastic, or
irreversible strains, up to a point where the stress level either asymptotes towards a steady state
or - in some cases - drops to a lower level. The typical stress-strain response for an elastoplastic
material is shown in Figure 3.1.

Stress

Strain

E

E

Plastic strain Elastic strain

Total strain

Figure 3.1: Stress-strain behaviour of an elastoplastic material.

In the following, the theory of elastoplasticity will briefly be reviewed before the various material types
available in OptumG2 will be documented in detail.

3.1 Additive decomposition

The fundamental assumption in elastoplasticity theory is the additive decomposition of elastic and
plastic strains (see Figure 3.1):

ε = εe + εp (3.1)

where ε are the total strains, εe are the elastic strains and εp are the plastic strains.

3.2 Elasticity

Assuming linear elasticity, the elastic strains are related to the effective stresses via Hooke’s law:

εe = Cσ′ ⇐⇒ σ′ = Dεe (3.2)

where C is the compliance modulus and D is the stiffness modulus (see Section 2). This law is often
stated in incremental form, but holds also in terms of total quantities of effective stress and elastic
strain.
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3.3 Flow rule

The plastic strains are related to the stresses via a flow rule that usually is expressed as

ε̇p = λ̇
∂G

∂σ′ (3.3)

where G is the flow potential, λ̇ ≥ 0 is a scalar (the so-called plastic multiplier), and a superposed
dot indicates incremental quantities.

3.4 Yield function

The stresses are limited by the yield function. This is always a function of the stresses but may also
involve various additional variables to account for hardening. The yield function can thus be written
as

F (σ′,κ) (3.4)

where σ′ are the effective stresses and κ is a set of stress-like hardening variables. The yield
function is specified such that F < 0 corresponds to purely elastic states while F = 0 indicates
yielding. States leading to F > 0 are not permissible under any circumstances. Although many
models make use of only one yield function, it is in principle possible to incorporate an arbitrary
number into a single model.

3.5 Hardening rule

The evolution of the hardening variable κ is specified via a hardening rule which in general can be
written as

κ̇ = λ̇h(σ′,κ) (3.5)

where h is the hardening function.

3.6 Complementarity conditions

The plastic multiplier, λ̇, must be such that it is non-zero only for stress states corresponding to
yielding. This requirement can be expressed via the complementarity conditions:

F (σ′,κ) ≤ 0, λ̇ ≥ 0, λ̇F (σ′,κ) = 0 (3.6)

3.7 Initial stresses

Nonlinear boundary value problems generally require knowledge of the initial state. In geotechnics,
the initial stress state is often characterized by the earth pressure coefficient K0 which relates the
vertical and horizontal stress components by:

K0 =
σ′
h

σ′
v

(3.7)

where σ′
h = σ′

x = σ′
z and σ′

v = σ′
y are the horizontal and vertical effective stresses respectively. In

OptumG2, K0 is a material parameter which can be used to specify the initial stresses according to
the relation above. Furthermore, an additional parameter σ0 can be specified such that the horizontal
and vertical stresses can be related by

σ′
h = K0σ

′
v + σ0 (3.8)
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4 HYDRAULIC MODELS

Variably saturated flow through porous media can be described by the mass balance equation

n
∂S

∂t
+∇Tq = 0 (4.1)

supplemented with the generalized Darcy’s law

q = −KrK∇hs = −KrK∇
(
y − pw

γw

)
(4.2)

where:

n = Porosity

S = Degree of saturation

q = (qx , qy )
T = Fluid velocity [m/day]

K = Saturated hydraulic conductivity modulus [m/day]

Kr = Relative hydraulic conductivity which is a function of degree of saturation

y = Vertical coordinate

γw = Unit weight of water (= 9.8 kN/m3)

ps = Pressure

hs = Head (= y − ps/γw )

Combining (4.1) and (4.2) leads to what is sometimes (especially in 1D) called Richards equation:

n
∂S

∂t
= ∇T

[
KrK∇

(
y − ps

γw

)]
(4.3)

Typical values of hydraulic conductivity for different materials are shown in Figure 4.1.

Figure 4.1: Typical values of hydraulic conductivity K = Kx = Ky .

Besides the constants n and K, the solution of this equation requires the relative hydraulic conduc-
tivity relation and the saturation-pressure relation (also known as the water retention curve or the
soil water characteristic curve).

In OptumG2, the saturated hydraulic conductivity modulus is always given by

K =

[
Kx

Ky

]
(4.4)
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where Kx and Ky are the saturated hydraulic conductivities in the x and y directions respectively.

The relative hydraulic conductivity relation and the retention curve are given by one of three available
models described below.

4.1 Linear model

The Linear model is a single-parameter model which approximates the degree of saturation, S , by
(see Figure 4.2):

S =


0 for ĥ ≤ −h∗

1 + ĥ/h∗ for −h∗ < ĥ < 0

1 for ĥ ≥ 0

(4.5)

where ĥ = −p/γw is the pressure head at zero elevation (note that the pore pressure p is negative
in the fully saturated range) and h∗ is a material parameter, the default value of which is h∗ = 0.5m.

kr, S

h*

1

h
^

Figure 4.2: Hydraulic model Linear.

The relative hydraulic conductivity is taken simply as the degree of saturation:

Kr = S (4.6)

4.2 Tanh relative hydraulic conductivity model

The Tanh model is a single-parameter model which approximates the degree of saturation as:

S =
1

2

[
1 + tanh

(
2ĥ

h∗

)]
(4.7)

where the parameter h∗ specifies the approximate range over which S increases from zero to 1 (see
Figure 4.3). The default value of the model parameter is h∗ = 0.5m.
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kr, S

h*

1

h
^

Figure 4.3: Hydraulic model Tanh.

As with the Linear model, the Tanh model takes the degree of saturation as the relative hydraulic
conductivity:

Kr = S (4.8)

4.3 van Genutchen model

The van Genuchten model is the most widely used hydraulic model in the soil sciences. It relates
degree of saturation to pressure head by:

S =

 Sr + (Ss − Sr )
(
1 + |αĥ|n

)−m

for ĥ ≤ 0

Ss for ĥ > 0
(4.9)

where ĥ = −p/γw , m = 1− 1/n and:

Sr = Residual degree of saturation (may be slightly greater than 0).

Ss = Fraction of water filled pores at full saturation (may be slightly less than 1).

α [m−1] = Model parameter related to the air entry pressure.

n = Model parameter related to the rate at which water is extracted from the soil once the air
entry pressure has been exceeded.

The relative hydraulic conductivity is related to the effective saturation, Se , as:

Kr =

 S
1/2
e

[
1−

(
1− S

1/m
e

)m]2
for Se < 1

1 for Se = 1
(4.10)

where

Se =
S − Sr

Ss − Sr
. (4.11)

16



HYDRAULIC MODELS

Alternatively, Kr can be expressed in terms of ĥ as:

Kr =



[
1− |αĥ|n−1

(
1 + |αĥ|n

)−m
]2

(
1 + |αĥ|n

)m/2 for ĥ ≤ 0

1 for ĥ > 0

(4.12)

Typical values of the parameters n and α are given in Table 4.1 and typical retention and relative
hydraulic conductivity curves are shown in Figure 4.4.

Material No. of Clay Content n α (m−1)

Samples Min Max Min Max Min Max

Sand 2 14 18 2.22 2.56 2.74 2.65

Loamy sand 10 23 108 1.33 2.56 4.41 2.35

Sandy loam 11 70 178 1.12 2.38 4.90 1.27

Sandy clay loam 15 208 349 1.06 1.85 3.92 1.47

Loam 7 122 260 1.23 1.96 4.90 1.76

Silt loam 5 120 270 1.14 1.25 9.60 1.47

Silty clay loam 8 280 390 1.14 1.43 8.82 0.98

Clay loam 6 304 348 1.05 1.64 4.90 0.78

Sandy clay 5 352 421 1.10 1.49 4.90 1.76

Silty clay 2 420 460 1.09 1.10 6.37 5.39

Clay 1 452 452 1.51 1.51 0.88 0.88

Table 4.1: Soil properties of 72 samples collected from the literature and the fitted van Genuchten
model n and α (after Ghanbarian-Alavijeh et al. 2010).
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Figure 4.4: Dependence of S(ĥ) and Kr (ĥ) on α (top) and n (bottom).
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5 COMMON PROPERTIES

The materials available in OptumG2 are grouped into six different material categories:

1. Solids for the modeling of solid materials (soil, rock, concrete, etc) and interfaces between
such materials.

2. Fluids for the modeling of bodies of water and other fluids.

3. Plates for the modeling of foundation plates, sheet pile walls and other structures that can be
idealized as one-dimensional elements in the x-y plane.

4. Geogrids for the modeling of geogrids or similar elements that cannot sustain tension.

5. Connectors for the modeling of fixed-end anchors and plate-to-plate connections.

6. Hinges for the modeling of hinges in Plates.

Each material category contains a one or more material types. For example, the material types
within the Solids category include the Mohr-Coulomb, Drucker-Prager, and Hoek-Brown material
types. These represent general models and can be further specialized to represent particular ma-
terials, for example the Loose Sand-MC, Firm Clay-MC and Loose Sand-HMC materials that are
available as predefined materials.

In OptumG2, the properties of any material can be gauged either by selecting the geometric object
(surface, line, point) to which it has been assigned or by selecting the material in the Materials ribbon.
This will bring up a property window located on the right hand side of the canvas. The properties of
the material are here organized into a number of different categories, of which Material is common
to all materials. Some examples are shown in Figure (5.1).

Figure 5.1: Properties of three materials belonging to the Solids (left), Beams (center) and Geogrids
(right) categories respectively.

Material

The Material category contains the following properties:

• Name: the name of the material. This field is editable and any changes will be reflected in the
ribbon and throughout the project.

• Category: material category (non-editable).

• Color: Material color. This field is editable and any changes will be reflected in the ribbon and
throughout the project.

• Material Type. Examples for Solids include Mohr-Coulomb, Drucker-Prager, and Hoek-Brown.
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• Reducible Strength (Yes/No). Determines whether or not the strength parameters of a given
material will be reduced in the course of Strength Reduction analysis (see the Analysis Man-
ual).

Besides the common properties, each material type involves a certain number of more specific
properties that describe the strength, stiffness, hydraulic conductivity, etc. These will be described
in detail for each material type in what follows.
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6 DRAINAGE

OptumG2 requires that a Drainage condition is specified for each Solid material. There are three
possible settings: Drained/Undrained, Always Drained, and Non-Porous. Moreover, for each anal-
ysis (each stage), a Time Scope must be chosen. There are two possibilities: Short Term or Long
Term. These two settings, Drainage Condition and Time Scope, determine whether the material
behaves in a drained or an undrained manner. The basic idea is that some materials behave in a
undrained manner in the short term (e.g. clay) while others always behave as drained both in the
short term and in the long term (e.g. sand).

The rules for whether a given point in the domain behaves in a drained or an undrained manner are
summarized in the table below.

Short Term

Long Term

Undrained

Drained

Drained

Drained

Drained

Drained

Drained/Undrained Always Drained Non-Porous

Figure 6.1: Material behavior as function of Drainage and Time Scope.

6.1 Cavitation Cut-Off

Under undrained conditions, materials that tend to dilate will produce positive (tensile) excess pore
pressures. Under standard conditions, the magnitude of the total pore pressure cannot exceed the
atmospheric pressure. This constraint can be imposed via the Cavitation Cut-Off option, see Figure
6.2. Setting Cavitation Cut-Off = Yes, gives the possibility to specify a cavitation pressure, pcav, such
that the total pore pressure is limited by

ps + pe ≤ pcav (6.1)

where ps and pe are the seepage and excess pore pressures respectively. Once ps + pe = pcav, the
behaviour becomes effectively drained and volume is no longer preserved. Note that tensile pore
pressure are positive consistent with the sign convention adopted for stress and strain.

Cavitation cut-offs are only relevant for Elastoplastic and Multiplier Elastoplastic analysis and are
ignored for all other analysis types.
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Figure 6.2: Material with Caviation Cut-Off.

6.2 Relation to “Method A, B, C”

Undrained analysis can be carried out in a number of ways of which the three most common are
(see Theory Manual, Section 4):

• Use the original drained parameters – for Mohr-Coulomb E , ν, c , and ϕ – in a coupled
deformation-excess pore pressure calculation. This is the most general and in many ways
the theoretically most satisfactory approach.

• Use drained stiffness parameters and undrained strength parameters – for Mohr-Coulomb
E , ν, and su – in a coupled deformation-excess pore pressure calculation. This is a rather
awkward hybrid approach that generally is not recommended. Note also that even though
excess pore pressures are calculated, these are not in general representative of the actual
excess pore pressures.

• Use undrained parameters for both stiffness and strength – for Mohr-Coulomb Eu and su – in
which case only a standard deformation analysis without excess pore pressures is necessary.

These three approaches are often referred to as Method A, B and C respectively.

In OptumG2, the three different approaches can easily be accommodated. The table below sum-
marizes the relevant settings for a Mohr-Coulomb material with Drainage = Drained/Undrained. It
is noted that while undrained analysis according to ‘Method C can be carried out with the Mohr-
Coulomb model, the Tresca model caters specifically for this approach. In particular, the use of
Tresca allows for the specification of the shear stiffness G while the use of Mohr-Coulomb requires
that the undrained Young’s modulus be specified (along with a Poisson’s ratio equal to 0.5). More-
over, the use of Tresca allows for a separate partial factor to be applied to the undrained shear
strength, su, when using Design Approaches. In conclusion, the recommendations for undrained
analysis are:

• Use either the original model, e.g. Mohr-Coulomb, with drained parameters and Time Scope
= Short Term (corresponding to Method A), or

• Use the Tresca model with undrained parameters (corresponding to Method C).
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Method A

Method B

Method C

Stiffness Strength Time Scope

E, ν c, φ Short Term

E, ν c = su, φ = 0 Short Term

c = su, φ = 0E = Eu, ν = 0.5
Any

Eu or G (Tresca) su (Tresca)

Table 6.1: Settings for undrained analysis of Drained/Undrained Mohr-Coulomb material.

Note that while the former approach implies a distribution of undrained shear strength that may or
may not be in accordance with what is observed in the field (see Section 8.4.2), the latter approach
specifies the distribution of undrained shear strength directly.
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7 SPATIAL VARIATION OF PARAMETERS

OptumG2 contains a number of options for varying the material parameters spatially. When select-
ing a material input field in the property grid, two buttons appear on the left: a calculator and a
table. Selecting the table opens a window in which the variation of the material parameters can be
specified. The following options are available:

• Constant: the trivial option of a constant value of the parameter throughout.

• Gradient: for specifying a linear variation.

• Profile: for specifying the an arbitrary variation with depth via a sequence of points.

• Map: for specifying an arbitrary variation throughout x-y space via a sequence of points.

The three last options are described in below.

7.1 Gradient

The gradient option requires a reference value of the parameter (Vref), two reference points (xref and
yref), two gradients (x-grad and y-grad).

V (x , y) = Vref + xgrad(x − xref) + ygrad(y − yref) (7.1)

Click to 

open

yref = 8 m
su,ref = 10 kPa

5 kPa

1 m

Figure 7.1: Specification of linear distribution of material parameter using Gradient.

An example is shown above. The resulting distribution of the parameter su is here given by

su(x , y) = su(y) = 10− 5(y − 8) (7.2)

In other words, su varies linearly with depth while there is no variation horizontally.

Note that the right-handed coordinate system used in OptumG2 implies a negative gradient for
parameters that increase with depth. It is strongly advised that spatially varying material parameters
be verified by the Material Parameters tool under the Results ribbon.
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7.2 Profile

The Profile option offers a flexible way of specifying arbitrary variations of material parameters with
depth. This done by specifying points (y, value) in the table under Profile. An example is shown
below.

Click to 

open

y = 8 m
su = 30 kPa

y = 6 m

y = 0 m

10

su = 40 kPa

Click to import data

Figure 7.2: Specification of material parameter variation with depth using Profile.

The data may be entered manually or imported from an MS Excel or similar file.

7.3 Map

This is the most general option for defining material data. Data in the form (x, y, value) are specified
as shown below.

Click to 

open

Click to import data

Figure 7.3: Specification of general material parameter distribution using Map.

As for Profile, data may be added manually or imported from an MS Excel file.
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7.4 Multiple data sets

For Profile and Map, it is possible to specify multiple data sets for the same material parameter, for
example two different profiles which will be processed in the course of two separate analyses.

The specification of multiple data sets is sketched in Figure 7.4. When opening the Material Param-
eter dialog, Import is clicked and the option Link to data file is selected under Source type. Next, the
option Multiple column data is selected under Rows and Columns. Finally, the data file is selected.

The data file is of the same format as standard Profile or Map data files but may contain more than
one column of material data (see Figure 7.4).

Click to 

open

Click to link to data

Data !le

y-coord Set 1 Set 2

Figure 7.4: Specification of material parameters via linked data file (top) and example of multi-column
Profile data file (bottom).

The linked data option is well suited for parameter studies where the sensitivity of various quantities
(bearing capacity, settlement, etc) to the material parameters is sought quantified.
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8 MOHR-COULOMB

The Mohr-Coulomb material is a solid material that may be applied both to surfaces and to lines.
In the latter case the line will act as a Shear Joint. The Mohr-Coulomb material assumes linear
elasticity and a yield function defined by two parameters, cohesion and friction angle. The flow
rule is generally nonassociated and defined by a dilation angle and, optionally, a dilation cut-off. In
addition, it is possible to specify a tension cut-off and a compression cap. The various parameters
can be accessed via the property window. They have been grouped into a number of categories that
in the following will be documented in turn.

Material
See Section 5.

Drainage
See Section 6.

Stiffness
The Mohr-Coulomb model offers three different kinds of elasticity: linear isotropic elasticity, nonlinear
isotropic elasticity and linear anisotropic elasticity. In the first case, the material parameters can be
defined in two ways:

either (Set A):

• Young’s modulus, E [MPa]

• Poisson’s ratio, ν

or (Set B):

• Bulk modulus, K [MPa]

• Shear Modulus, G [MPa]

The two sets of parameters, (E , ν) and (K ,G ), are related by

K =
E

3(1− 2ν)
, G =

E

2(1 + ν)
(8.1)

or

E =
9KG

3K + G
, ν =

3K − 2G

2(3K + G )
(8.2)

It should be noted that the two parameter sets are not linked automatically. For example, if Set A is
chosen and E and ν entered, changing the parameter set to Set B, does not lead to an automatic
computation of K and G on the basis of E and ν.

Secondly, for the Nonlinear option, the Young’s modulus is pressure dependent following

E = Eur ,refΠ(σ
′
3) (8.3)
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where

Π(σ′
3) =

(
−σ′

3 + c/ tanϕ

pref + c/ tanϕ

)m

(8.4)

with σ′
3 being the minor principal stress. The associated parameters are:

• pref [kPa] : Reference pressure (confining pressure in triaxial compression test).

• m : Fitting parameter.

The parameter m depends on the soil type. For soft clays, m should be chosen as m ≈ 1 (giving rise
to relations similar to those used in the Modified Cam Clay model) while for sands and other coarse
grained materials m ≈ 0.5 is appropriate.

The final option, Graham-Houlsby, implements the anisotropic elasticity of (Graham and Houlsby
1983, see also Section 2.2). The input parameters are:

• Young’s modulus in the y -direction, Eyy [MPa]

• Poisson’s ratio in the x-direction to strain applied in the y -direction, νxy

• Ratio of the Young’s moduli in the x- and y -directions, Exx/Eyy

Strength
The basic Mohr-Coulomb yield function is given by

F = |σ1 − σ3|+ (σ1 + σ3) sinϕ− 2c cosϕ (8.5)

where σ1 and σ3 are the major and minor principal stresses respectively and the material parameters
are:

• Cohesion, c [kPa]

• Friction angle, ϕ [◦]

Some possible depictions of the Mohr-Coulomb yield surface are shown in Figure 8.1.

Flow Rule
The Mohr-Coulomb flow potential is given by

G = |σ1 − σ3|+ (σ1 + σ3) sinψ (8.6)

To start with, the Flow Rule category distinguishes between two settings: Associated and Nonasso-
ciated. In the former case, G = F is assumed while in the latter case, input of a dilation angle ψ0

is required. In addition, for a Nonassociated flow rule, it is possible to specify a Dilation Cap such
that the dilation angle is set to zero once the value of a particular strain quantities reaches a critical
values. Two different dilation caps, Volumetric and Shear are available. These differ by the strain
quantity used to cap the dilation. For Dilation Cap = Volumetric, the dilation angle varies according
to [see Figure 8.2(a)]:

ψ =

{
ψ0 for εv ≤ εv ,cr

0 for εv > εv ,cr

(8.7)
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|σ1−σ3|

2c cosφ

−(σ1+σ3)

sinφ

1

−σ1

−σ3

−σ1

−σ3

−σ2

(a)

(b)

(c)

1

 1+sinφ
 1−sinφ

 2c cosφ
 1−sinφ

sinφ

Figure 8.1: Possible depictions of Mohr-Coulomb yield surface in principal stress space. In (a) and
(b), the principal stress ordering is σ1 ≤ σ2 ≤ σ3 while no particular ordering is assumed in (c).
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Dilation Cap

ψ0

εs,cr
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(a) Dilation Cap = Volumetric:

(b) Dilation Cap = Shear:

εs,cr

Dilation Cap

Figure 8.2: Variation of dilation angle and volumetric strain versus shear strain response.

where εv = ε1 + ε2 + ε3 is the volumetric strain. Using a Dilation Cap, a shear strain-volumetric
strain behaviour such as that shown schematically in Figure 8.2(b) can be accounted for.

For Dilation Cap = Shear, the dilation angle varies according to [see Figure 8.2(b)]:

ψ =

{
ψ0 for εs ≤ εs,cr

0 for εs > εs,cr

(8.8)

where εs =
√

(ε1 − 1
3
εv )2 + (ε2 − 1

3
εv )2 + (ε3 − 1

3
εv )2 is a measure of the shear (or deviatoric)

strain.

In summary, the Flow Rule category involves the following settings and parameters:

• Flow Rule (Associated/Nonassocited)

◦ Flow Rule = Nonassociated: Dilation angle ψ0 [◦]

◦ Flow Rule = Nonassociated: Dilation Cap (No/Volumetric/Shear)

– Dilation Cap = Volumetric: εv ,cr [%]

– Dilation Cap = Shear: εv ,cr [%]
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Tension cut-off (optional)
It is possible to introduce a tension cut-off. This is given by

Ft = |σ1 − σ3|+ (σ1 + σ3) sinϕt − 2kt sinϕt (8.9)

where the parameters are:

• Tensile strength, kt [kPa].

• Inclination of the tension cut-off cone, ϕt [◦].

The default values correspond to a regular tension cut-off (kt = 0, ϕc = 90◦).

Note: the flow rule used for the tension cut-off is associated. As such, the use of a tension cut-off
under undrained conditions may lead to counterintuitive results, including an apparent increase in
strength. Hence, the use of tension cut-offs under undrained conditions is not recommended.

|τ|

c 

−σ

φ

k
t

φ
t

Figure 8.3: Mohr-Coulomb yield envelope with tension cut-off in σ-τ space.

Compression Cap (optional)
It is further possible to introduce a compression cap. This is given by

Fc = |σ1 − σ3| − (σ1 + σ3) sinϕc − 2κc sinϕc (8.10)

where the cap hardens according to:
κ̇c = −H ε̇pv ,c (8.11)

where εpv ,c is the part of the plastic volumetric strain associated with the compression cap.

The parameters that define the hardening compression cap are given by:

• Initial compressive strength, κc,0 [kPa].

• Inclination of the compression cone, ϕc [◦].

• Hardening (Yes/No)

◦ Hardening = Yes: Hardening parameter, Hc [kPa].
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The flow potential of the compression cap is the cap yield function, i.e. flow on the cap is associated.

The Mohr-Coulomb yield functions are shown in Figure 8.4. Alternatively, in terms of the normal and
shear stresses on the critical plane, the yield functions take on the appearance shown in Figure 8.5.

2κc

|σ1−σ3|

2c cosφ

−(σ1+σ3)

sinφ

1

sinφ
c

1

2k
t

sinφ
t

1

Figure 8.4: Mohr-Coulomb yield functions in (σ1 + σ3)-|σ1 − σ3| space.

|τ|

c 

−σ

φ

φ
c

k
t

κ
c

φ
t

Figure 8.5: Mohr-Coulomb yield functions in σ-τ space.

For confined compression under drained conditions, the compression cap implies a bilinear stress-
strain response as shown in Figure 8.6.
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Figure 8.6: Stress-strain response under drained confined compression.

Under undrained conditions, the stress path (for ψ = 0) is as shown in Figure 8.7. The undrained
shear strength, su, depends on both the elastic and plastic parameters and is given by

su = c cosϕ−

[(
1
2
(σ′

1,0 + σ′
3,0)

H

K̃
− κc,0

)
sinϕc + c cosϕ

]
sinϕ

(1 + H
K̃
) sinϕc + sinϕ

(8.12)

where

K̃ =
E

1− ν − 2ν2
(8.13)

and σ′
1,0, σ

′
3,0, and κc,0 are the initial effective stresses and hardening variable respectively. From

(8.12) the following limits of su are obtained:

su = c cosϕ+
(κc,0 sinϕc − c cosϕ) sinϕ

sinϕ+ sinϕc
for H = 0 (stationary cap)

su = c cosϕ− 1
2
(σ′

1,0 + σ′
3,0) sinϕ for H = ∞ (no effect of cap)

(8.14)

2κc

|σ1−σ3|

−(σ1+σ3)

(σ1,0+σ3,0)

2su

H
 
=
 
∞

H
 =
 0

Initial cap

′ ′

Figure 8.7: Stress path under undrained conditions.

An example of the influence of the H/K̃ ratio is shown in Figure 8.8.
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Figure 8.8: Undrained shear strength (normalized by the strength for H/K̃ = ∞) as function of
H/K̃ . Parameters: c = 0, ϕ = 25◦, ϕc = 45◦, σ′

1,0 = σ′
3,0 = −100 kPa, κc,0 = 100 kPa.

Fissures (optional)
The strength of materials with regular fissure patterns may be accounted for by using a combination
of the usual Mohr-Coulomb failure criterion supplemented with additional constraints on the normal
and shear stresses on the fissure planes (Davis 1980; Zheng et al. 1997). In OptumG2, it is possible
to define two fissure planes such that the strength is limited by:

F (σ) ≤ 0

|τ1|+ σ1 tanϕ1 − c1 ≤ 0, σ1 ≤ kt1

|τ2|+ σ2 tanϕ2 − c2 ≤ 0, σ2 ≤ kt2

(8.15)

where F is the usual Mohr-Coulomb yield function (8.5) and (σ1, τ1) and (σ2, τ2) are the normal and
shear stresses on the two fissure planes. In OptumG2, up to two fissure planes (not necessarily
mutually orthogonal) can be defined via the following parameters:

• Orientation of Plane i , αi [◦].

• Cohesion on Plane i , ci [kPa].

• Friction angle on Plane i , ϕi [◦].

• Tensile strength of Plane i , kti [kPa].

x

y

α
2

α
1

Figure 8.9: Example of circular tunnel in fissured material and definition of angles α1 and α2.
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where i = 1, 2 and the angles αi are as shown in Figure 8.9. Note: setting kti = Infinity implies that
the constraint σi ≤ kti is ignored.

Unit weights
The weight of the materials is specified via:

• Dry unit weight, γdry [kN/m3].

• Saturated unit weight, γs [kN/m3].

For calculations involving seepage or stationary water tables, the unit weight at any given point is
calculated as:

γ = (1− S)γdry + Sγsat (8.16)

where S is the degree of saturation.

Initial Conditions
The initial stresses are specified via two parameters:

• The earth pressure coefficient K0.

• The parameter σ0 (kPa).

The Initial Stress analysis aims to determine an admissible stress field that satisfies:

σ′
x = K0σ

′
y + σ0 = K0σ

′
z + σ0 (8.17)

For σ0 = 0, we have the classic relations

σ′
x

σ′
y

=
σ′
x

σ′
z

= K0 (8.18)

Hydraulic Model
The hydraulic properties of the materials are specified via:

• Hydraulic model (Linear, van Genuchten, Tanh).

• Hydraulic conductivity in the x direction, kx [m/day].

• Hydraulic conductivity in the y direction, ky [m/day].

• Parameters related to the particular hydraulic model (see Section 4 for details).

8.1 Notes

Dilation Cap: The dilation angle is updated at the beginning of each load step or each new stage.
As such, for Dilation Cap = Volumetric, the total volumetric strain at the end of the load or stage may
in calculations be observed to be somewhat higher than εv ,cr, especially locally around footing edges
and other singularities.

Dilation in Short Term analysis the dilation angle may affect the results significantly and an inad-
equate choice of dilation angle may lead to unexpected and counterintuitive results. In particular,
for Drained/Undrained materials under Short Term analysis, any other value than ψ = 0 will lead to
an infinite limit load (see the Theory manual). Consequently, ψ is automatically set to zero for such
analyses.
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ϕ = 0◦ 5◦ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

ψ = 0◦ 1.0000 1.0038 1.0154 1.0353 1.0642 1.1034 1.1547 1.2208 1.3054 1.4142
5◦ – 1.0000 1.0039 1.0158 1.0364 1.0668 1.1086 1.1642 1.2370 1.3321

10◦ – – 1.0000 1.0040 1.0164 1.0382 1.0707 1.1161 1.1776 1.2597
15◦ – – – 1.0000 1.0042 1.0174 1.0407 1.0762 1.1266 1.1962
20◦ – – – – 1.0000 1.0045 1.0187 1.0443 1.0838 1.1410
25◦ – – – – – 1.0000 1.0048 1.0205 1.0491 1.0941
30◦ – – – – – – 1.0000 1.0054 1.0229 1.0556
35◦ – – – – – – – 1.0000 1.0061 1.0262
40◦ – – – – – – – – 1.0000 1.0070
45◦ – – – – – – – – – 1.0000

Table 8.1: Strength reduction factor ωD for computing Davis parameters.

ϕ = 0◦ 5◦ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

ψ = 0◦ 0.00 4.98 9.85 14.51 18.88 22.91 26.57 29.84 32.73 35.26
5◦ – 5.00 9.96 14.78 19.35 23.61 27.51 31.03 34.15 36.89

10◦ – – 10.00 14.94 19.70 24.19 28.33 32.10 35.47 38.44
15◦ – – – 15.00 19.92 24.62 29.02 33.05 36.68 39.90
20◦ – – – – 20.00 24.90 29.54 33.84 37.75 41.23
25◦ – – – – – 25.00 29.88 34.46 38.65 42.43
30◦ – – – – – – 30.00 34.86 39.36 43.45
35◦ – – – – – – – 35.00 39.83 44.26
40◦ – – – – – – – – 40.00 44.80
45◦ – – – – – – – – – 45.00

Table 8.2: Davis friction angle ϕD as function of Mohr-Coulomb friction and dilation angle.

8.2 Influence of dilation angle on limit load

In the analysis types Limit Analysis and Strength Reduction under Long Term conditions, the dilation
angle is always assumed associated, i.e. a user defined dilation angle that differs from the friction
angle will be overridden for these analysis types. On the other hand, for Elastoplastic and Multiplier
Elastoplastic analysis the user specified dilation angle will be used. The question then arises as
to what extent the dilation angle affects the limit load. While the full answer to this question is
rather involved and multifaceted, it is indisputable that the limit load for a material with ψ = ϕ
will be greater than or equal to that a material with ψ < ϕ. The extent to which the assumption of
nonassociated flow reduces the bearing capacity is quite problem dependent. A reasonable estimate
of the reduction can be obtained by conducting the limit analysis using a set of reduced parameters
that depend on the original c , ϕ, and ψ as:

cD =
c

ωD
, ϕD = ψD = arctan

(
tanϕ

ωD

)
, ωD =

1− sinϕ sinψ

cosϕ cosψ
(8.19)

where (c ,ϕ,ψ) are the original parameters and (cD ,ϕD ,ψD) are the reduced parameters (often
referred to as Davis parameters after Davis 1968, who first proposed them). The strength reduction
factor ωD and the corresponding friction angle ϕD are tabulated below for different ϕ and ψ.
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It should be noted that while the Davis parameters usually lead to a bearing capacity less than that
obtained in an elastoplastic analysis with the actual c , ϕ and ψ, there are also cases where the
opposite is true (see the Example Manual).

8.3 Strength reduction

In Strength Reduction analysis, the Mohr-Coulomb criterion is treated by reducing the parameters c
and tanϕ equally (see Figure 8.10) to induce a state of collapse. The resulting factor is the strength
based factor of safety:

FSs =
c

cred
=

tanϕ

(tanϕ)red
(8.20)

While the decision as to which parameters are reduced is quite subjective, the approach used in
OptumG2 is very common and may further be viewed as being consistent with Eurocode 7. It does,
however, suffer from the drawback that the tensile strength, c/ tanϕ, is unaffected by the reduction,
i.e. c/ tanϕ = cref/(tanϕ)ref.

|τ|

c 

−σ

φ

c/tan φ

Original

Reduced

Figure 8.10: Original and reduced Mohr-Coulomb envelopes.

8.4 Capabilities and limitations of Mohr-Coulomb

The Mohr-Coulomb model has a number of inherent limitations and cannot be expected to capture
the entire spectrum of soil behaviour. On the other hand, as with any model, the predictions of the
Mohr-Coulomb model depend crucially on the choice material parameters. Generally speaking, if
the material parameters are reasonable, so are the predictions of the model.

Moreover, it should be recognized that while more complex models may lead to better predictions for
some particular stress paths or types of laboratory experiments, there is no guarantee that the pre-
dictions under different conditions represent reality any better than a simpler model. Indeed, while
the limitations of the Mohr-Coulomb model are well known, the same is often not the case for more
complex models where the predictions under conditions for which the model has not be calibrated
may be quite erroneous.

As such, while the relative simplicity of the Mohr-Coulomb model imposes certain limitations, it is the
same simplicity and transparency that makes it an attractive tool for practical geotechnical analysis.

In the following, two well known limitations of the Mohr-Coulomb model are briefly discussed.
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8.4.1 Initial stiffness versus unloading/reloading stiffness

For real soils, one often observes that the stiffness in unloading/reloading is significantly higher
than in initial (virgin) loading. The Mohr-Coulomb model, however, operates with a single elastic
stiffness in both regimes. This means that the real soil stiffness is either underestimated in un-
loading/realoading (if the elastic parameters are set to match the soil response in first loading), or
overestimated in first loading (if the elastic parameters are set to match the soil response in unload-
ing/reloading. This point is illustrated in Figure 8.11.

q

σ1 = q + p0

σ3 = p0

ε1

qu

Eur

Mohr-Coulomb

Real behaviour

(idealized)

qu2
1

E50

Eur

Figure 8.11: Soil behaviour in first loading and unloading/reloading compared to the Mohr-Coulomb
model.

Consequently, some care must be exercised in the choice of Young’s modulus. For example, for a
footing loaded for the first time, the initial secant modulus, E50, would be appropriate while for ex-
cavation problems, the unloading/reloading modulus, Eur , may be more representative of the actual
soil stiffness. As a general rule of thumb, the two moduli are related by Eur/E50 ≃ 2–5. It should
be noted, however, that many problems will be dominated by effects other than those related to the
elastic moduli of the soil. For example, the deformation of retaining structures in excavation prob-
lems may be much more dependent on the soil strength and the properties of the retaining system
(walls, anchors, etc) than the soil stiffness moduli. Also, the ultimate limit state is independent of the
elastic properties of the soil.

The shortcomings of the Mohr-Coulomb model in capturing the different moduli in initial loading
and unloading/reloading are addressed by the Extended Mohr-Coulomb (HMC) model described in
Section 16.

8.4.2 Undrained conditions

Under undrained conditions (in OptumG2, for materials with Drainage Conditions = Drained/Undrained
in analyses with Time Scope = Short Term), the Mohr-Coulomb model, with ψ = 0, implies a zero
change of effective mean stress. Assuming plane strain conditions, it may be shown that the sum of
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the in-plane effective stresses remains constant. This sum can further be identified as the sum of
the major and minor effective stresses. The Mohr-Coulomb yield function may therefore be written
as:

|σ1 − σ3| = 2c cosϕ− (σ′
1 + σ′

3)0 sinϕ

= 2c cosϕ− (σ′
x + σ′

y )0 sinϕ

= 2c cosϕ+ (1 + K0)σ
′
v ,0 sinϕ

= 2su

(8.21)

where σ′
v ,0 = −σy ,0 is the initial effective vertical stress (positive in compression) and K0 = σx ,0/σy ,0

is the initial earth pressure coefficient. Under undrained conditions, the Mohr-Coulomb failure crite-
rion thus reduces to that of Tresca (see Section 10) with a cohesion equal to the undrained shear
strength su.

The stress path under undrained plane strain conditions is illustrated in Figure 8.12. The shear
stress |σ1 − σ3| is here increased under an initial effective pressure −(σ′

x + σ′
y )0.

su = c cosϕ+ 1
2
(1 + K0)σ

′
v ,0 sinϕ (8.22)

In other words, the undrained shear stress is a function of the initial vertical effective stress, the earth
pressure coefficient, and the Mohr-Coulomb parameters c and ϕ.

The conditions under general stress states, including those encountered in axisymmetry, are con-
siderably more complex than those in plane strain. They are covered in detail in Section 10.
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Figure 8.12: Behavior of clay under undrained conditions.

The predicted behaviour of the Mohr-Coulomb model and its implications in terms of strength are
an approximation to real soil behaviour. Generally speaking, some changes to the mean effective
stress will occur when soils are sheared under undrained conditions. Normally consolidated soils
will tend to contract, leading to an increase in excess pore pressure and thereby a decrease in
effective mean stress with the result that the maximum shear stress is lower than predicted by the
Mohr-Coulomb model. On the other and, heavily overconsolidated soils will tend to dilate, leading
to a decrease in excess pore pressure and thereby an increase in effective mean stress and hence
a higher maximum shear stress than predicted by the Mohr-Coulomb model. The former type of
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behaviour may to some extent be accounted for by a hardening cap. Otherwise, if sufficient material
data is available, the Modified Cam Clay model is well suited to capture the behaviour of soft soils
under undrained conditions.
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9 DRUCKER-PRAGER

The Drucker-Prager material is very similar to the Mohr-Coulomb material but uses slightly different
expressions for the yield and plastic potential function.

Material, Drainage, Stiffness

See Section 8

Strength

The Drucker-Prager yield function is given by

F = Mp + q − k (9.1)

where

p = 1
3
(σx + σy + σz)

q =
√

1
2
(σx − σy )

2 + 1
2
(σy − σz)

2 + 1
2
(σz − σx)

2 + 3τ 2xy + 3τ 2yz + 3τ 2zx

(9.2)

The strength parameters of the Drucker-Prager model are:

• Friction coefficient M .

• Cohesion k [kPa].

Flow Rule

The Drucker-Prager flow potential is given by

G = Np + q − k (9.3)

The settings in the flow rule category are analogous to those of the Mohr-Coulomb material with N
and N0 replacing ψ and ψ0 respectively.

Tension cut-off (optional)

It is possible to introduce a tension cut-off of the type:

Ft = Mtp + q −Mtkt (9.4)

where the parameters are:

• Slope of tension cut-off Mt .

• Tensile strength kt [kPa].

Note that the default value Mt = 1.5 corresponds to a plane strain Mohr-Coulomb friction angle of
ϕ = 90◦ (see Section 9.3)
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Figure 9.1: Drucker-Prager yield functions in p-q space.

Compression Cap (optional)
It is further possible to introduce a compression cap. This is given by

Fc = −Mcp + q −Mcκc (9.5)

where the cap hardens according to:
κ̇c = −H ε̇pv ,c (9.6)

with εpv ,c being the part of the plastic volumetric strain associated with the compression cap.

The parameters that define the hardening compression cap are given by:

• Initial compressive strength, κc,0 [kPa].

• Slope of the compression cone, Mc .

• Hardening (Yes/No).

◦ Hardening = Yes: Hardening parameter, Hc [kPa].

The flow potential of the compression cap is the cap yield function, i.e. flow on the cap is associated.
The Drucker-Prager yield function and compression cap are shown in Figure 9.1.

Unit weights, Initial Stresses, Permeability
See Section 8.

9.1 Notes

Dilation Cap: See Section (8.1).

9.2 Influence of dilation on limit load

The effects of nonassociated flow on the limit load are similar to those described for the Mohr-
Coulomb model (see Section 8.2). For the Drucker-Prager model the equivalent Davis parameters
are given by (see Krabbenhoft et al. 2012a, for details):

MD = M/ωD , kD/ωD (9.7)
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where

ωD =

√
9 + 4M2 − 8MN

9− 4N2
(9.8)

In other words, use of MD and kD in place of the original parameters will in Limit Analysis and
Strength Reduction lead to results similar to those of a full nonassociated elastoplastic calculation
to failure using the original M , N and k .

9.3 Drucker-Prager vs Mohr-Coulomb

Assuming associated flow, the Drucker-Prager and Mohr-Coulomb surfaces can be matched in plane
strain (see Figure 9.2) by the following choice of parameters:

M =
3 sinϕ√
3 + sin2 ϕ

, k =
3c cosϕ√
3 + sin2 ϕ

(9.9)

where c and ϕ are the Mohr-Coulomb parameters. The equivalent k and M are tabulated as func-
tion of ϕ and c in Table 9.1). In Limit Analysis and other analyses using an associated flow rule, the
Drucker-Prager model with the equivalent Mohr-Coulomb parameters will produce results identical
to the Mohr-Coulomb model. However, in elastoplastic calculations, the Drucker-Prager model will
lead to a slightly less stiff response than the Mohr-Coulomb model.

In the general nonassociated case, the Drucker-Prager dilation coefficient can be matched approxi-
mately to the Mohr-Coulomb dilation angle by

N =
3 sinψ√
3 + sin2 ψ

(9.10)

In drained elastoplastic analysis using a nonassociated flow rule, it is often observed that the
Drucker-Prager model with equivalent Mohr-Coulomb parameters leads to a lower bearing capacity
for a given mesh. However, as the mesh is refined, the two models will eventually result in similar
bearing capacities.
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Figure 9.2: Drucker-Prager (DP) cone and matching to Mohr-Coulomb (MC) criterion in plane strain
(associated flow rule).

ϕ k/c M ϕ k/c M

0 1.732051 0.000000
1 1.731699 0.030226 26 1.509171 0.736071
2 1.730644 0.060435 27 1.492839 0.760639
3 1.728888 0.090607 28 1.476049 0.784829
4 1.726432 0.120723 29 1.458816 0.808635
5 1.723279 0.150767 30 1.441153 0.832050
6 1.719434 0.180719 31 1.423074 0.855069
7 1.714900 0.210563 32 1.404594 0.877687
8 1.709684 0.240280 33 1.385726 0.899901
9 1.703791 0.269854 34 1.366484 0.921705

10 1.697228 0.299267 35 1.346881 0.943096
11 1.690004 0.328503 36 1.326932 0.964073
12 1.682125 0.357546 37 1.306650 0.984631
13 1.673602 0.386381 38 1.286046 1.004769
14 1.664444 0.414992 39 1.265135 1.024486
15 1.654661 0.443365 40 1.243929 1.043781
16 1.644263 0.471484 41 1.222440 1.062651
17 1.633262 0.499338 42 1.200681 1.081098
18 1.621671 0.526912 43 1.178662 1.099120
19 1.609499 0.554195 44 1.156396 1.116718
20 1.596762 0.581173 45 1.133893 1.133893
21 1.583470 0.607837 46 1.111165 1.150645
22 1.569637 0.634174 47 1.088221 1.166974
23 1.555277 0.660176 48 1.065073 1.182883
24 1.540404 0.685832 49 1.041730 1.198373
25 1.525030 0.711133 50 1.018201 1.213445

Table 9.1: Relation between Mohr-Coulomb and Drucker-Prager parameters according to (9.9)–
(9.10).
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Figure 9.3: Original and reduced Drucker-Prager envelopes.

9.4 Strength reduction

In Strength Reduction analysis (see the Analysis Manual), the Drucker-Prager criterion is treated
by reducing the parameters k and M equally (see Figure 9.3) to induce a state of collapse. The
resulting factor is the strength based factor of safety:

FSs =
k

kred
=

M

Mred
(9.11)

While the decision as to which parameters are reduced is quite subjective, the approach used for the
Drucker-Prager criterion is consistent with the one used for the Mohr-Coulomb criterion. As such,
the tensile strength, k/M , is unaffected by the reduction.

9.5 Undrained conditions

Under undrained conditions with N = 0, the effective mean stress remains constant and the Drucker-
Prager yield function can be expressed as

Fu = q − ku (9.12)

where
ku = k − 1

3
M(1 + 2K0)p

′
0 (9.13)

is the undrained strength. The Drucker-Prager yield condition thus effectively reduces to that of von
Mises.
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10 TRESCA

As discussed in Section 8.4.2, the effective stress Mohr-Coulomb model is equivalent to the Tresca
model under undrained conditions in plane strain. Under more general stress states than those as-
sociated with plane strain, this consistency between the effective stress Mohr-Coulomb model and
total stress Tresca model is lost.

The Tresca material model addresses this issue by providing two models: the Standard Tresca model
involving the yield function (8.21) and the Generalized Tresca model involving a similar total stress
yield function consistent with the effective stress Mohr-Coulomb model under general stress states.

Unlike most solid materials, the Tresca material does not require input regarding drainage and no
excess pore pressures are calculated regardless of the the Time Scope.

Material
See Section 8.

Stiffness
The Tresca model operates with undrained elastic parameters: Eu (Set A) or G (Set B).

Strength
Two options regarding strength are available:

• Standard, requiring input of the undrained shear strength, su (kPa).

• Generalized, requiring input of the undrained shear strengths in triaxial compression and tri-
axial extension, suc and sue (kPa), respectively.

These two options are discussed in more detail below.

Spatial variation the strength parameters may be specified as for all other materials.

Tension cut-off, Unit Weights, Initial Conditions, Hydraulic Model
See Section 8.

10.1 Standard Tresca

The Standard Tresca failure criterion is given by

F = |σ1 − σ3| − 2su (10.1)

with su being the undrained shear strength. In plane strain, there is no ambiguity about the physical
meaning of su, it is the undrained shear strength measured in direct simple shear or similar plane
strain experiments. For full consistency with the Mohr-Coulomb model, the undrained shear strength
should be set to:

su = c cosϕ+ 1
2
(1 + K0)σ

′
v ,0 sinϕ (10.2)
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where it is assumed that the initial effective stresses are related by σ′
x/σ

′
y = σ′

z/σ
′
y = K0. However,

the idea with the Tresca model, is that su instead is specified directly, without reference to other
parameters, and possibly made to increase with depth to reflect the expected dependence on the
initial vertical stress.

10.2 Generalized Tresca

While the Standard Tresca model in it itself is quite general, its use under any other conditions than
plane strain is somewhat unsatisfactory. Firstly, the fundamental soil parameters are those which
govern the response of effective stress versus strain. As such, any total stress model should, as a
minimum, be equivalent to a relevant underlying effective stress model. This equivalence exists be-
tween Mohr-Coulomb and Standard Tresca in plane strain, but not under more general stress states.
Secondly, it is a well established experimental fact that the undrained strength shear is a function
of the stress path leading to failure. For example, undrained shear strengths measured in triaxial
compression and triaxial extension may differ considerably. However, the Standard Tresca model
predicts equal undrained shear strengths regardless of the stress path or type of experiment.

The Generalized Tresca model addresses these shortcomings of the standard model by using the
following yield function:

F = |σ1 − σ3|+ α(σ3 − σ2)− k (10.3)

where compressive stresses are negative and the principal stresses are ordered as σ1 ≤ σ2 ≤ σ3.
Consistency with the Mohr-Coulomb model in terms of the strength domain is obtained by selecting
the parameters α and k as:

α =
2 sinϕ

3− sinϕ
, k =

6

3− sinϕ

[
1
3
(1 + 2K0)σ

′
v ,0 sinϕ+ c cosϕ

]
(10.4)

where it is assumed that the initial effective stresses are related by σ′
x ,0/σ

′
y ,0 = σ′

z,0/σ
′
y ,0 = K0 (in

axisymmetry by σ′
x ,0/σ

′
y ,0 = σ′

θ,0/σ
′
y ,0 = K0).

Alternatively, the parameters α and k can be related to the undrained shear strengths measured in
triaxial compression and triaxial extension:

α =
suc
sue

− 1, k = 2suc (10.5)

where suc is the undrained shear strength measured in triaxial compression and sue is the undrained
shear strength measured in triaxial extension. These parameters, suc and sue , are those required
as input in OptumG2. As with all other parameters, suc and sue can be made to increase with depth
to reflect dependence on the initial effective vertical stress. The Generalized Tresca yield surface is
shown in Figure 10.1. It should be noted that the allowable parameter range is

1
2
≤ sue

sue
≤ 1 (10.6)

Outside this range the yield surface becomes non-convex and the calculation will not proceed.
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Figure 10.1: Generalized Tresca failure surface in the deviatoric plane (top) and in principal stress
space for an intermediate value of sue/suc (bottom). The points indicated correspond to triaxial
compression (TC) and triaxial extension (TE). No particular ordering of the principal stresses is
assumed.

10.3 Theoretical and empirical relations for undrained shear strength

For plane strain Short Term analysis with Drained/Undrained Mohr-Coulomb materials, the equiva-
lent Tresca undrained shear strength parameter is given by

su = c cosϕ+ 1
2
σ′
v ,0(1 + K0) sinϕ (10.7)

where c and ϕ are the Mohr-Coulomb parameters, K0 is the earth pressure coefficient, and σ′
v ,0 is

the initial vertical effective stresses (positive in compression). The implied variation of su with ϕ and
K0 is shown in Figure (10.2). We see that for realistic values of the drained parameters, the implied
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su/σ
′
v ,0 ratio is in the range of about 0.1 to 0.5. This corresponds fairly well to what is observed

experimentally for normally consolidated clays (see Figure 10.3).
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Figure 10.2: Variation of su/σ′
v ,0 implied by Mohr-Coulomb model (c = 0).
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Figure 10.3: Variation of su/σ′
v ,0 with overconsolidation ratio for different clays (after Muir Wood

1990).

Moreover, a large number of empirical relations for the su/σ
′
v ,0 ratio are available, some of which

are summarized in Table 10.1. A detailed discussion of these and similar relations are given by
Muir Wood (1990) and Ladd and DeGroot (2003).
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su/σ
′
v ,0 = 0.11 + 0.0037PI Normally consolidated clays (Skempton 1957)

su/σ
′
v ,0 = 0.22 Clays with OCR < 2 (Mesri 1975)

su/σ
′
v ,0 = 0.23± 0.04 Soft inorganic clays with PI < 60% (Larsson 1980)

su/σ
′
v ,0 = 0.22OCR0.8 Inorganic clays (Ladd and DeGroot 2003)

su/σ
′
v ,0 = 0.25OCR0.8 Silts and organic soils not including peats (Ladd and DeGroot 2003)

su = 20(N60)
0.72 (kPa) Clays with OCR < 3 (Hara et al. 1974)

su = 27N60PI−0.22 (kPa) Stiff clays (Vardenega and Bolton 2013)

Table 10.1: Empirical relations for variation of undrained shear strength with vertical stress. PI =
plasticity index (%), OCR = overconsolidation ratio, N60 = SPT blow count.

Concerning the ratio between the triaxial compression and extension strengths, the effective stress
Mohr-Coulomb model predicts:

sue
suc

=
3− sinϕ

3 + sinϕ
(10.8)

where ϕ is the drained friction angle. By correlating this ratio to the plasticity index, for example by
(Muir Wood 1990):

sinϕ = 0.81− 0.1 lnPI (10.9)

we have
sue
suc

=
2.19 + 0.1 lnPI
3.81− 0.1 lnPI

(10.10)

The implied variation of the sue/suc ratio with the plasticity index is shown in Figure 10.4. The avail-
able data tend to confirm a trend of this kind although the scatter in the data is significant. Further
details on the modeling of arbitrary sue/suc ratios are covered under the AUS model in Section 11.
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Figure 10.4: Variation of sue/suc according to (10.10).
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10.4 Strength Reduction

In Strength Reduction analysis, the strengths are reduced to produce a state of incipient collapse.
The Factor of Safety is thus defined by

FSs =
su

su,red
(Standard)

FSs =
suc

suc,red
=

suc
sue,red

(Generalized)

(10.11)

In practice, however, it is usually more convenient to conduct the analysis as a Limit Analysis with
Multiplier = Gravity. If only Tresca materials are present, the resulting gravity multiplier, i.e. gravity
based factor of safety, is equal to the strength based factor of safety:

FSg =
γ

γcr
= FSs =

su
su,red

(Standard)

FSg =
γ

γcr
= FSs =

su
suc,red

=
su

sue,red
(Generalized)

(10.12)

In contract to Strength Reduction, Limit Analysis requires only a single iteration and is therefore
usually considerably faster.
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11 ANISOTROPIC UNDRAINED SHEAR (AUS)

The Anisotropic Undrained Shear (AUS) model may be seen as a further development of the Gen-
eralized Tresca model described in Section 10.2. It is a total stress model aimed at clays and similar
materials. The input parameters comprise material data that can be easily determined in standard
undrained laboratory tests. The particular features of the AUS model include:

• A hardening Generalized Tresca yield surface. This yield surface is consistent with the be-
haviour of frictional materials, including clays, under undrained conditions and general stress
states.

• Direct specification of the undrained shear strengths in triaxial compression, triaxial extension,
and simple shear.

• Distinction between elastoplastic secant stiffnesses in triaxial compression and extension.

Being a total stress model, the AUS model does not require input regarding drainage and no excess
pore pressures are calculated regardless of the Time Scope.

Material
See Section 8.

Stiffness
The AUS model operates with standard isotropic elasticity, with input parameters being either the
undrained Young’s modulus, Eu (Set A), or the shear modulus, G (Set B).

In addition to the elastic stiffnesses, the axial strains halfway to failure in compression and extension
are required :

• Axial strain at half the failure stress in triaxial compression, εC ,50 [%]

• Axial strain at half the failure stress in triaxial extension, εE ,50 [%]

These quantities are shown in Figure 11.1.

Strength
The strength may be either Isotropic or Anisotropic. In both cases, the undrained shear strengths in
triaxial compression and extension are the basic strength parameters (see discussion below). The
full set of material parameters is:

• Undrained shear strength in triaxial compression, suc [kPa]

• Undrained shear strength in triaxial extension, sue [kPa]

• Undrained shear strength in simple shear, sus (for Option = Anisotropic)

Spatial variation of the strength parameters may be specified as for all other materials.

Tension cut-off, Unit Weights, Initial Conditions, Hydraulic Model
See Section 8.
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11.1 Background

The typical behaviour of clays and similar materials in undrained triaxial compression and extension
is roughly as sketched in Figure 11.1.

2suc

σa = p0+∆σa

σr  = p0

σa = p0−∆σa

σr  = p0

εa

2sue

TE

TC

σa− σr

suc

sue

εc,50

Eu

εe,50

Figure 11.1: Typical stress-strain behaviour in triaxial compression (TC) and triaxial extension (TE).

In the triaxial compression test, an initial state given by σa = σr = p0 is first established. The axial
stress is then increased by an amount ∆σa until failure is reached at σa − σr = 2suc .

In the triaxial extension test, the same initial state is used, but the axial stress is now released by an
amount ∆σa until failure is reached at −(σa − σr ) = 2sue .

The failure strengths in the two cases, measured by half the difference in axial and radial stress are
the undrained shear strengths, suc and sue , respectively.

The following general observations hold over a wide range of conditions:

• The compression strength, suc , is usually larger than the extension strength, sue . In the field,
both strengths tend to vary approximately linearly with the vertical stress and thereby approx-
imately linearly with depth.

• The response is usually, but not always, somewhat stiffer in compression than in extension.
In OptumG2, the overall elastoplastic stiffness is specified via the elastoplastic moduli in com-
pression and extension, Euc,50 and Eue,50 respectively.

11.2 Undrained shear strengths

It is usually observed that the undrained shear strengths in triaxial compression (suc ), triaxial exten-
sion (sue) and simple shear (sus ) are related to each other by

suc < sus < sue (11.1)
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The phenomenon that the undrained shear strengths resulting from different types of loading differ
from one another is often referred to as anisotropy. This is somewhat unfortunate as anisotropy
usually refers to the phenomenon that a material has different properties in different directions. For
example, as a result of their deposition, many soils have a lower hydraulic conductivity vertically than
horizontally. Similarly, some soils may have different elastic properties in the different directions, for
example a higher Young’s modulus vertically than horizontally.

It is also possible to contemplate that some soils would have anisotropic strengths, e.g. one strength
when subjected to compression vertically and another when subjected to the same kind of com-
pression horizontally. However, the fact that different undrained shear strengths result from different
types of loading is not, in the first instance, an indication of anisotropy in the usual sense of the word.
It is an entirely expected feature of any frictional material (including clays, silts and similar) whose
drained strengths differ in compression and extension (see Figure 11.2).

These observations must necessarily enter into the considerations when developing a reasonable
constitutive model and the AUS model is unique in this regard. In particular, it distinguishes sharply
between the part of the sue/suc and sue/sus ratios that would be expected from an isotropic material
and the part than could reasonably be conceived as stemming from physical anisotropy, for example
as a result of layering, direction of deposition, etc.

Moreover, the AUS model provides the option of including physical anisotropy or not. If physical
anisotropy is not included, sue and suc are the basic strength parameters and sus follows from these.
If physical anisotropy is included, there is the additional possibility of specifying the sus/suc ratio
(within certain limits).

11.2.1 Isotropic strength

For the Isotropic strength option, the Generalized Tresca surface is used (see Figure 11.3) and the
triaxial compression and extension strengths are the basic strength parameters. This model comes

Triaxial extension

Triaxial compression

σx’σz’

σy’ σx’−

p’

2suc

2sue 6sinφ

3+sinφ

6sinφ

3−sinφ

σy’

p0’

Figure 11.2: Behaviour of an isotropic linear elastic-perfectly plastic Mohr-Coulomb material in
undrained triaxial compression and extension with y denoting the axial direction.
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Figure 11.3: Generalized Tresca surface used in AUS with Isotropic strength option (for all shear
stresses equal to zero).

with the limitation that

0.5 ≤ sue
suc

≤ 1 (11.2)

For sue/suc below 0.5 the yield surface becomes non-convex and while ratios of sue/suc up to 2
in principle could be accommodated, the internal limitation in OptumG2 is that the compression
strength remains greater than or equal to the extension strength.

With sue and suc specified, the strength in simple shear follows as:

sus =
(
1
2
s−1
ue + 1

2
s−1
uc

)−1
=

2suesuc
sue + suc

(11.3)
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In other words, sus is the harmonic mean of the triaxial extension and compression strengths. This
means that sus will tend to be somewhat closer to sue than to suc , something that is generally observed
experimentally.

11.2.2 Anisotropic strength

The Anisotropic strength option allows for specification of sus in addition to sue and suc . To ultimately
achieve the desired strengths (if they do not comply with the Isotropic predictions outlined above)
the shape of the yield surface is altered and it is shifted in the y -direction (thereby identifying this
direction with the orientation of the samples in the tests from which the strengths are determined).
The basic principle is illustrated in Figure 11.4.

It should be noted, however, that constraints pertaining to the convexity of the yield surface prevent a
completely arbitrary sus/suc ratio from being specified. In particular, for a given sue/suc ratio there is
an upper and a lower limit to the sus/suc ratio that can be accommodated. These limits are illustrated
in Figure 11.5 and further listed in Table 11.1 for various sue/suc ratios. For sus/suc ratios above the
admissible range, a warning will be issued and the closest attainable sus/suc ratio will be used in the
subsequent analysis. For sus/suc belows above the admissible range, an error will be issued and the
calculations will not proceed.

A unique feature of the Anisotropic version of the AUS model is that anisotropy only is included
to the extent that it is necessary to accommodate the specified strength ratios. If the parameters
are specified according to the relations implied by the Isotropic version, no anisotropy will result.
More generally, the degree of anisotropy eventually included is a function of how much the specified
strength ratios differ from what would be expected from an isotropic material.

σy

σxσz

TE (isotropic)

TE (anisotropic)

TC (anisotropic)

TC (isotropic)

Figure 11.4: Shift of the Generalized Tresca surface to accommodate specified sue/suc and sus/suc
ratios with Anisotropic strength option.
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Figure 11.5: Admissible parameter space for Anisotropic strength option. The dashed line shows
the sus/suc implied by a user specified sue/suc for Isotropic strength option.

sue/suc (sus/suc)min (sus/suc)max (sus/suc)isotropic

0.00 0.45 0.57 –
0.05 0.47 0.60 –
0.10 0.49 0.63 –
0.15 0.52 0.66 –
0.20 0.54 0.69 –
0.25 0.56 0.72 –
0.30 0.58 0.75 –
0.35 0.60 0.77 –
0.40 0.63 0.80 –
0.45 0.65 0.83 –
0.50 0.67 0.86 0.67
0.55 0.69 0.89 0.71
0.60 0.72 0.92 0.75
0.65 0.74 0.95 0.79
0.70 0.76 0.98 0.82
0.75 0.78 1.00 0.86
0.80 0.80 1.00 0.89
0.85 0.82 1.00 0.92
0.90 0.84 1.00 0.95
0.95 0.86 1.00 0.97
1.00 0.88 1.00 1.00

Table 11.1: Minimum and maximum admissible sus/suc as function of sue/suc together with the ratio
implied by the Isotropic strength option.

11.3 Hardening

With the shape and shift of the yield surface in place, the model is completed by specifying an
appropriate hardening law. In the AUS model the hardening is of the isotropic kind, meaning that
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Figure 11.6: Hardening AUS yield surface (Anisotropic).

from an initial yield surface that contains the initial stress state, the yield surface expands in an
affine manner as a result of plastic straining to reach its ultimate extent as given by the strength
parameters. This is illustrated in Figure 11.6.

11.4 Plastic potential

The plastic potential of the AUS model is that of von Mises, i.e. a circle in the deviatoric plane. This
type of plastic potential has long been used for clays (see e.g. Potts and Zdravkovic 2001; Roscoe
and Burland 1968) and has a number of advantages over the immediate alternatives such as Tresca.

11.5 Parameter estimation

11.5.1 Strengths

Ideally speaking, the three different shear strengths should be determined in three independent
experiments. If only data from one or two experiments are available, the remaining parameters can
be estimated on the basis of previously published results. A data set involving all three strengths
is that of Ladd (1991) shown in Figure 11.7. From this data set, the following approximate relations
can be inferred:

sue/suc ≃ 0.50 + 0.0034PI

sus/suc ≃ 0.69 + 0.0015PI
(11.4)

and thereby:

sus/suc ≃ 0.47 + 0.44sue/suc (11.5)

for 0.5 ≤ sue/suc ≤ 0.84.

In another study concerned with Norwegian clays, Karlsrud and Hernandez-Martinez (2013) linked
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Figure 11.7: Variation of undrained shear strength with plasticity index for triaxial compression (TC),
direct simple shear (DSS) and triaxial extension (TE). From Ladd (1991).

the strength ratio to the water content w :

sue/suc = 0.277 + 0.0029w

sus/suc = 0.454 + 0.00447w
(11.6)

and thereby:
sus/suc = 0.03 + 1.54sue/suc (11.7)

for 0.35 ≤ sue/suc ≤ 0.5 (corresponding to the range of water contents considered, w ≃ 25% to
75%).

This above relations are shown in Figure 11.8 together with the minimum and maximum sus/suc that
are attainable with the AUS model. Also shown are various data collected by Muir Wood (1990).
We see that the AUS model is capable of accommodating most of these experimentally determined
shear strength ratios.

11.5.2 Strains halfway to failure

The axial strain halfway to failure in triaxial compression is usually of order εc,50 ≃ 0.5 to 2% over a
wide range of conditions. The strain at halfway to failure in extension is usually some 2 to 5 times
εc,50.

11.5.3 Example

Figure 11.9 shows the results of a triaxial compression test on Todi clay reported by Burland et al.
(1996). The test was conducted under a confining pressure of p0 = 3, 200 kPa.

From the test data shown in Figure 11.9, the undrained shear strength is immediately read off as:

suc = 2, 035 kPa (p0 = 3, 200 kPa) (11.8)
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Figure 11.8: Admissible parameter space together with data from Ladd (1991), Karlsrud and
Hernandez-Martinez (2013) and Muir Wood (1990) and sus/suc as function of sue/suc for the Isotropic
version of the AUS model.
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Figure 11.9: AUS fit to Burland et al. (1996) data.

The axial strain at this level of σa − σr is approximately εc,50 = 0.75%. A secant modulus can thus
be defined by

EC ,50 =
2, 035× 10−3 MPa

0.0075
= 271MPa (p0 = 3, 200 kPa) (11.9)

Using an elastic modulus 10 times this, Eu = 2, 710MPa, results in the fit shown in Figure 11.9. The
remaining parameters (which have no influence on the behaviour in compression) must either be
estimated or derived from an additional extension test.

11.6 Governing equations

The governing equations of the AUS model are summarized below.
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The yield function is given by

F = q̂ −

[
6w√

3(1 + 1/ρ) cos θ̂ − 3(1− 1/ρ) sin θ̂
+ 2(1− w)

]
κ (11.10)

where κ is a hardening variable and

q̂ =

√
3Ĵ2 (11.11)

Ĵ2 = J2(ŝ) =
1
2
ŝTDŝ (11.12)

ŝ = σ −mp − aŝur (11.13)

m = (1, 1, 1, 0, 0, 0)T (11.14)

D = diag(1, 1, 1, 2, 2, 2)T (11.15)

p = 1
3
mTσ (11.16)

r = (1
2
,−1, 1

2
, 0, 0, 0)T (11.17)

θ̂ = 1
3
arcsin

(
3
√
3

2

Ĵ3

Ĵ
3/2
2

)
(11.18)

Ĵ3 = J3(ŝ) = ŝ11ŝ22ŝ33 + 2ŝ12ŝ23ŝ31 − ŝ212ŝ33 − ŝ223ŝ11 − ŝ231ŝ22 (11.19)

This produces the a rounded version of the Generalized Tresca surface with a shift in the y -direction
of magnitude aŝu and the rounding controlled by w . The parameters ŝu and a are related to the input
parameters by:

ŝuc =


suc (Option = Isotropic)

1 + sue/suc
1 + ρ

suc (Option = Anisotropic)
(11.20)

a =


0 (Option = Isotropic)

4

3

ρ− sue/suc
1 + sue/suc

(Option = Anisotropic)
(11.21)

For the Isotropic option, the parameters ρ and w are given by:

ρ =
sue
suc

, w = 1 (11.22)

For the Anisotropic option, ρ is given by

ρ =


1 + r − sus/suc −

√
(1 + r)(1 + r − 2sus/suc)

sus/suc
, sus/suc ≤ M

1 , sus/suc > M

(11.23)
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sue/suc = 0.6
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sus/suc = 0.85

Figure 11.10: Examples of AUS yield surfaces (ultimate state).

and w is given by

w =


1 , sus/suc ≤ M

2
√
3
(
1 + r −

√
3sus/suc

)
√
3(2−

√
3)(1 + r)

, sus/suc > M

where
r =

sue
suc

, M = 1
2
(1 + r) (11.24)

Therefore, below the line sus/suc = 1
2
(1 + sue/suc), the yield surface is of the Generalized Tresca

type (0.5 ≤ ρ ≤ 1 and w = 1), while above it, it comprises a rounded Tresca hexagon (ρ = 1 and
w < 1). Some examples are shown in Figure 11.10.

The flow rule is given by
G = q̂ (11.25)

The hardening rule is given by

κ̇ = λ̇
ln 2

β
(ŝu − κ) (11.26)

where λ̇ is the plastic multiplier and

β =

(
1

2
−

√
3

2
tan θ̂

)
εc,50
100

+

(
1

2
+

√
3

2
tan θ̂

)
εe,50
100

(11.27)

with εC ,50 and εE ,50 being the axial strains (in percent) halfway to failure in triaxial compression and
extension respectively.
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11.7 Notes

11.7.1 Limit analysis

Limit analysis is available for the AUS model as for all other models. Since iterations are required the
results are somewhat influenced by the convergence tolerance which can be set under Convergence
Parameters in Project. Moreover, since the AUS model is nonassociated (Generalized Tresca for the
yield potential and von Mises for the flow potential) a situation may arise where where limit loads
calculated with the Lower element are slightly larger than those calculated with the Upper element.
However, in far most cases the difference between the two will be very small and the situation is in
fact an indication that the solution is unlikely to change significantly upon further mesh refinement.

11.7.2 Strains halfway to failure

Strictly speaking, the input material parameters εc,50 and εe,50 refer to the the plastic strains halfway
to failure in compression and extension. Usually, the distinction between total and plastic strains is
immaterial as the elastic strains will be an order of magnitude smaller than the plastic strains. In
some cases, however, the yield surface and initial stress state are such that a significant part of the
initial stress-strain response will be purely elastic. In such cases, εc,50 and εe,50 can be estimated
as shown in Figure 11.11. That is, the initial elastic part of the stress-strain curve (up to a level of
σa − σr = σ0) is ignored and εc,50 is taken as the axial strain at the halfway point to failure with
respect to the remaining elastoplastic part of the stress-strain curve.

2suc

εa

σa− σr

σ0

εc,50

(2suc−σ0)
1
2

Elastic

Elastoplastic

Figure 11.11: Definition of εc,50 in the case where the initial response is pure elastic.
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12 HOEK-BROWN

The Hoek-Brown criterion is commonly used to describe the strength of fractured rock. The Hoek-
Brown model implemented in OptumG2 uses the 2007 version of the Hoek-Brown criterion (Hoek
2007) as the failure criterion while the Mohr-Coulomb surface is used as the plastic potential. In
addition, it is possible to incorporate a compression cap as in the Mohr-Coulomb model. Similarly,
regarding elasticity, the simple linear elastic model is used.

Material, Drainage, Stiffness
See Section 8.

Strength
The Hoek-Brown yield function is given by:

F = −(σ1 − σ3)− σci

(
−mb

σ3
σci

+ s

)a

(12.1)

with

mb = mi exp

(
GSI − 100

28− 14D

)
s = exp

(
GSI − 100

9− 3D

)
a =

1

2
+

1

6

(
e

−GSI
15 − e

−20
3

)
(12.2)

where GSI is the Geological Strength Index, σci is the uniaxial compressive strength of the intact
rock, mi is a material constant, and D is the disturbance factor. In OptumG2, the following parame-
ters are used as input:

• Geological Strength Index, GSI.

• Uniaxial compressive strength of the intact rock, σci [kPa].

• Intact rock parameter, mi .

• Disturbance factor, D.

Flow Rule
The Hoek-Brown model makes use of a Mohr-Coulomb flow potential (see Section 8) with a variable
dilation angle. For pure tension, the dilation angle is ψ = 90◦ corresponding to separation. The
dilation angle then decreases with σ3 to a user specified value of ψ0 for σ3 = 0. A further linear
decrease then takes place until σ3 = −σψ, where σψ is a user defined parameter, after which the
dilation angle remains at zero. In summary, the dilation angle varies with σ3 according to (see also
Figure 12.1):

ψ =


ψ0 +

90◦ − ψ0

σt
σ3, 0 ≤ σ3 ≤ σt

ψ0 +
ψ0

σψ
σ3, −σψ ≤ σ3 ≤ 0

0, σ3 ≤ −σψ

(12.3)
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−σ3

ψ

−σ
t

90°

σ
ψ

ψ0

Hoek-Brown failure surface

−σ1

No dilation cap

With dilation cap

Figure 12.1: Variation of dilation angle.

As with the Mohr-Coulomb and Drucker-Prager models, it is also possible to use an associated
flow rule in which case the plastic potential is the Hoek-Brown yield function. The parameters and
settings of the Flow Rule category are:

• Flow Rule (Associated/Nonassocited)

◦ Flow Rule = Nonassociated: Dilation angle ψ0 [◦]

◦ Flow Rule = Nonassociated: Dilation Cap (Yes/No)

– Dilation Cap = Yes: σψ [kPa]

Compression cap, Unit Weights, Initial Stresses, Permeability
See Section 8.
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12.1 Strength

Guidelines for estimating the four Hoek-Brown parameters GSI, σci , mi and D are provided in Figures
12.4-12.8. Some typical Hoek-Brown yield envelopes are shown in the Figures below.

−5 5 15 25 35 45 50

0

50

100

150

200

250

300

350

−σ
3

 [MPa]

−
σ

1
 [

M
P

a
]

Figure 12.2: Yield envelopes for σci = 50MPa, D = 0, mi = 30 and different GSI (bottom to top):
20, 40, 60, 80, 100.
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Figure 12.3: Yield envelopes for σci = 50MPa, D = 0, GSI = 60, and different mi (bottom to top):
5, 10, 15, 20, 25, 30.
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Figure 12.4: Geological Strength Index, GSI, for blocky rock masses on the basis of interlocking and
joint conditions (after Hoek 2007).
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Figure 12.5: Geological Strength Index, GSI, for heterogeneous rock masses such as flysch (after
Hoek 2007).
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Grade Term    Uniaxial

Compressive

Strength

(MPa)

Field estimate of strength Examples

R6 Extremely

strong

> 250 Specimen can be chipped with a

geological hammer

Fresh basalt, chert,

diabase, gneiss, granite

quartzite

R5 Very strong 100 − 250 Specimen requires many blows of a

geological hammer to fracture it

Amphibolite, sandstone,

basalt, gabbro, gneiss,

granodiorite, limestone,

marble, rhyolite, tuff

R4 Strong 50 − 100 Specimen requires more than one blow

of a geological hammer to fracture it

Limitstone, marble

phyllite, sandstone

schist, shale

R3 Medium

strong

25 − 50 Cannot be scraped or peeled with

a pocket knife, specimen can be

fractured with a single blow from a

geological hammer

Claystone, coal, concrete

schist, shale, siltstone

R2 Weak 5 − 25 Can be peeled with a pocket knife with

difficulty, shallow indentation made by

firm blow with point of a geological

hammer

Chalk, rocksalt, potash

R1 Very weak 1 − 5 Crumbles under firm blows with point

of a geological hammer, can be peeled

by a pocket knife.

Highly weathered or

altered rock

R0 Extremely

weak

0.25 − 1 Indented by thumbnail Stiff fault gouge

Figure 12.6: Field estimates of uniaxial compressive strength σci (after Hoek 2007).
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Conglomerate Sandstone Siltstone Claystone
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(18)
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Carbonate

Chemical
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Migmatite
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ClassRock
type
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Granodiorite
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Diorite
(28)
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Rhyolite

(16)
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(25-31)

(4-8)

Non-Foliated

Slightly Foliated

Extrusive Pyroclastic Type

Figure 12.7: Values of the constant mi by rock group (after Hoek 2007).
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Figure 12.8: Guidelines for estimating the disturbance factor D (after Hoek 2007).
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12.2 Elastic parameters

There are several empirical equations relating the elastic parameters to measures of rock type and
quality. For Young’s modulus, Hoek (2007) quotes the following correlation:

E = 105

(
1− 1

2
D

1 + exp
(
75+25D−GSI

11

)) [MPa] (12.4)

The variation of E with GSI for different values of D is shown in Figure 12.9.
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Figure 12.9: Variation of Young’s modulus with GSI for different values of D.

For most rock types Poisson’s ratio falls in the range of ν = 0.1 to ν = 0.4, with a significant variation
within the same rock type (see Figure 12.10).
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Figure 12.10: Poisson’s ratio for some rock types (after Gercek 2007).

12.3 Relation to Mohr-Coulomb parameters

Following the approach described by Hoek (2007), the curved Hoek-Brown yield envelope may be
approximated by the Mohr-Coulomb model using the standard Mohr-Coulomb cone augmented with
a tension-cutoff.

Firstly, with reference to the Mohr-Coulomb model implemented in OptumG2, the tension cut-off
parameters are given by

• kt =
sσci
mb

[kPa]

• ϕt = 90◦

Secondly, a best-fit Mohr-Coulomb line in the interval between −σt ≤ −σ3 ≤ σ3,max, leads to the
following Mohr-Coulomb parameters:

• ϕ = arcsin

[
6amb(s +mbσ3n)

a−1

2(1 + a)(2 + a) + 6amb(s +mbσ3n)a−1

]
[◦]

• c =
σci [(1 + 2a)s + (1− a)mbσ3n](s +mbσ3n)

a−1

(1 + a)(2 + a)

√
1 +

6amb(s +mbσ3n)
a−1

(1 + a)(2 + a)

[kPa]
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Figure 12.11: Mohr-Coulomb fit to Hoek-Brown envelope for GSI = 60, σci = 50MPa, mi = 30,
D = 0, and σ3,max = 5MPa.

where σ3n = σ3,max/σci with σ3,max being positive in compression. An example of a fit is shown in
Figure 12.11.

As a rule of thumb, Hoek (2007) suggests that a first estimate of σ3,max may be taken as σ3,max =
0.25σci .

12.4 Strength reduction

In Strength Reduction analysis (see the Analysis Manual), the Hoek-Brown criterion is treated by
reducing the parameters σci and mb equally to induce a state of collapse. The resulting factor is the
strength based factor of safety:

FSs =
σci

(σci)red
=

mi

(mi)red
(12.5)

An example of the difference between the original yield envelope and that resulting from a factor
of 1.25 is shown in Figure 12.12. While the decision as to which parameters are reduced is quite
subjective, the approach used for the Hoek-Brown criterion is consistent with the one used for the
Mohr-Coulomb criterion. As such, the tensile strength sσci/mb is unaffected by the reduction.
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Original: σci = 40 MPa

               mi = 10

Reduced: σci = 40/1.25 = 30 MPa

                 mi = 10/1.25 = 8

Figure 12.12: Original and reduced Hoek-Brown envelopes.
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13 GSK

The GSK model is similar to the Hoek-Brown model in that a curved yield surface is used in place of
the Mohr-Coulomb yield surface. The GSK yield function is a generalization of the one proposed by
Krabbenhoft et al. (2012b) to account for the pressure dependence of the peak strength of granular
materials such as sands, particularly at low stress levels. The generalized model allows for including
a finite tensile strength. An attractive feature of the GSK criterion is that all parameters involved (four
in total) may be interpreted in terms of a standard Mohr-Coulomb criterion.

Material, Drainage, Stiffness
See Section 8.

Strength
The yield function is given by:

F = −[σ1 − a2(σ3 − σt)]− (k − a2σt)

{
1− exp

[
a1 − a2
k − a2σt

(σ3 − σt)

]}
(13.1)

where

a1 =
1 + sinϕ1

1− sinϕ1
, a2 =

1 + sinϕ2

1− sinϕ2
, k =

2c cosϕ2

1− sinϕ2
(13.2)

with the input parameters being:

• Friction angle at low stress levels, ϕ1 [◦]

• Friction angle at high stress levels, ϕ2 [◦]

• Apparent cohesion at high stress levels, c [kPa]

• Tensile strength, σt [kPa]

k

σ
t

a1

a2−σ1

−σ3

Figure 13.1: GSK yield envelope in σ1–σ3 space [compare to the standard Mohr-Coulomb envelope,
Figure 8.1(b)].
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The GSK yield envelope is shown in Figure 13.1. It may be interpreted as a nonlinear Mohr-Coulomb
envelope with friction angle ϕMC and cohesion cMC given by (see Figure 13.2):

ϕMC = arcsin

(
B − 1

B + 1

)
cMC =

1− sinϕMC

2 cosϕMC
(A+ Bσ3)

(13.3)

where

A = a2(σt − σ3) + (k − a2σt)

{
1− exp

[
(a2 − a1)(σt − σ3)

k − a2σt

]}
B = a2 − (a2 − a1) exp

[
(a2 − a1)(σt − σ3)

k − a2σt

] (13.4)

−σ1

−σ3

 1+sinφ
MC

 1−sinφ
MC

 2c
MC

 cosφ
MC

 1−sinφ
MC

Figure 13.2: GSK envelope and Mohr-Coulomb tangent plane defined by cMC and ϕMC [compare to
the standard Mohr-Coulomb envelope, Figure 8.1(b)].

For cohesionless materials such as sands, the strength is often specified in terms of the secant
friction angle, ϕsec, defined by (

σ1
σ3

)
f

=
1 + sinϕsec

1− sinϕsec
(13.5)

where (σ1/σ3)f is the stress ratio at failure (see Figure 13.3). For the GSK model, the secant friction
angle is given by

ϕsec = arcsin

(
Af + σ3f
Af − σ3f

)
(for σt = 0) (13.6)

where Af = A(σ3f ) is given by (13.4). With the secant friction angle at three different stress states,
the three GSK parameters, a1, a2 and k (or, equivalently, ϕ1, ϕ2 and c) can be determined.

77



GSK

−σ1

−σ3

 1+sinφsec
 1−sinφsec

−σ3f

−σ1f

Figure 13.3: GSK yield envelope with definition of secant friction angle.

Flow Rule

The GSK model offers three different possibilities for specifying the flow rule:

• Associated. Standard associated flow rule the flow potential equal to the GSK yield function.

• GSK. Nonassociated flow rule with a dilation angle ψ = β(ϕ − ϕ2) where ϕ is the current
equivalent Mohr-Coulomb friction angle and β is a parameter. This is similar to the flow rule of
the Bolton model (see Section 14).

• Constant Dilation. Nonassociated flow rule with a constant dilation angle equal to ψ0 except
for 0 ≤ σ3 ≤ σt where it varies linearly between ψ0 and ϕ1 as shown in Figure 13.4.

The GSK and Constant Dilation flow rules may be further augmented by a strain based dilation cap
as in the Mohr-Coulomb model.

ψ = φ1

ψ = ψ
0

−σ
t

−σ3

−σ1

GSK failure surface
a1

Figure 13.4: Variation of dilation angle.

Compression Cap, Unit Weights, Initial Stresses, Permeability

See Section 8.
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Figure 13.5: Triaxial test results matched to the GSK criterion with the parameters of Table 13.1.

13.1 Examples of application

Krabbenhoft et al. (2012b) conducted a series of triaxial tests on sands of variable density. The peak
strengths were found to be fitted very well using the parameters shown in Table 13.1. It is noted that
c ≈ 5 kPa is relatively insensitive of the relative density and that ϕ1 − ϕ2 ≈ 7◦ independent of Dr .

Dr ϕ1 (
◦) ϕ2 (

◦) c (kPa)
0.20 34.2 27.0 3.7
0.59 39.7 33.3 5.1
0.84 43.3 36.5 5.0

Table 13.1: GSK parameters as function of relative density for triaxial tests on sand (Krabbenhoft
et al. 2012b). In all cases σt = 0.

0 5 10 15 20 25
0

5

10

15

20

25

ψ
0

φ
1
−30

°

Figure 13.6: Relation between measured ϕ1 and ψ0 (data from Krabbenhoft et al. 2012b).
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Regarding the flow rule, the experiments mentioned above suggest a value of the dilation angle of
(see Figure 13.6)

ψ0 ≃ ϕ1 − 30◦ (13.7)

The value of the maximum volumetric strain, εv ,cr, ranged from about 1% for the loose sand to about
10% for the dense sand and with a trend to decrease with increasing confining pressures.

In another study, Ahmed (1972) found a variation of the friction angle with the confining stress as
shown in Figure 13.7. The tests were here conducted under plane strain conditions for sands with
a relative density of approximately 0.7–0.75. Again the GSK model provides a reasonable fit to the
data.
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Figure 13.7: Plane strain test results for sands with two different uniformity coefficients (UC) matched
to the GSK criterion with parameters ϕ1 = 52◦, ϕ2 = 35◦, c = 25 kPa, σt = 0 (test data from Ahmed
1972).

Finally, while the Hoek-Brown model is available for the modeling of rock, the GSK model is in many
cases capable of reproducing typical experimental data rather well. Two examples are shown in
Figure 13.8 where triaxial test data for a limestone and a sandstone have been fitted by the GSK
criterion.
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(a) Limestone: ϕ1 = 58◦, ϕ2 = 5◦, c = 35MPa, σt =
4MPa. Experimental data from Hoek (1983).
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(b) Sandstone: ϕ1 = 60◦, ϕ2 = 20◦, c = 31MPa, σt =
4MPa. Experimental data from Sheorey (1997)

Figure 13.8: GSK fits to triaxial test data for limestone (left) and sandstone (right).

13.2 Strength reduction

In Strength Reduction analysis (see the Analysis Manual), the GSK criterion is treated by reducing
the parameters c , tanϕ1 and tanϕ2 equally (see Figure 13.9) to induce a state of collapse. The
resulting factor is the strength based factor of safety:

FSs =
c

cred
=

tanϕ1

(tanϕ1)red
=

tanϕ2

(tanϕ2)red
(13.8)

While the decision as to which parameters are reduced is quite subjective, the approach used for the
GSK criterion is consistent with the one used for the Mohr-Coulomb criterion. As such, the tensile
strength σt is unaffected by the reduction.

|τ|
φ2

c

−σ

φ1

σ
t

Original

Reduced

Figure 13.9: Original and reduced GSK envelopes.
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13.3 Notes

The GSK criterion is convex only for

σt ≤
2c cosϕ2

1 + sinϕ2
(13.9)

Analyses with parameter sets not satisfying this inequality will not be processed.
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14 BOLTON

The Bolton model incorporates the stress-dilatancy correlations for sands proposed by Bolton (1986).
These correlations provide peak friction and dilation angles as function of stress level and relative
density. For a fixed density, the resulting failure envelope is nonlinear and similar to those of Hoek-
Brown and GSK, i.e. the apparent friction angle increases with decreasing mean stress.

Material, Drainage, Stiffness
See Section 8.

Strength
The yield function of the Bolton model is of the Mohr-Coulomb type with a pressure and density
dependent friction angle:

FB = |σ1 − σ3|+ (σ1 + σ3) sinϕB (14.1)

The friction angle is given by
ϕB = ϕcv + bIR (14.2)

where ϕcv is the constant-volume (critical-state) friction angle, b is a model parameter and IR is the
relative dilatancy. The latter quantity is defined by Bolton (1986) as:

IR = ID(Q − ln p)− R (14.3)

where ID is the relative density, p is the mean stress, and Q and R and model parameters. Bolton
(1986) suggests that IR is limited by:

0 ≤ IR ≤ 4 (14.4)

While some evidence for very large friction angles at very low stresses levels is available (e.g Alshibli
et al. 2003) OptumG2 implements the above limits.

In summary, the Bolton model requires specification of five parameters:

1. The constant-volume (critical-state) friction angle ϕcv . Typical values are in the range of 30◦ ≤
ϕcv ≤ 36◦ with ϕcv = 33◦ often being reported (Bolton 1986).

2. The relative density ID varying between 0 and 1.

3. The model parameter Q. Bolton (1986) links this to the particle crushing strength, σc , by
Q = lnσc and suggests values of Q = 10 for quartz and feldspar grains down to Q = 8 for
limestone, Q = 7 for anthracite, and Q = 5.5 for chalk.

4. The model parameter R . Bolton (1986) suggests a value of R = 1 for a wide range of sands.

5. The model parameter b. Bolton (1986) suggests values of b = 3 for triaxial compression
and b = 5 for plane strain. However, significantly lower values have also been reported, e.g.
m = 1.6 by White et al. (2008).

The variation of the friction angle ϕB with mean stress is shown in Figure 14.1 for some typical
parameter sets.
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Figure 14.1: Variation of friction angle with mean stress for ϕcv = 33◦, ID = 0.5, Q = 10, R = 1.

Flow Rule
The flow potential of the Bolton model is given by

GB = |σ1 − σ3|+ (σ1 + σ3) sinψB (14.5)

The Bolton model provides a choice of two flow rules:

• Associated. Standard associated flow rule with ψB = ϕB .

• Bolton. Nonassociated flow rule with ψB = β(ϕB − ϕcv ) where β is a parameter. The original
relations published by Bolton recommended β = 1.25.

In both cases, the dilation can be limited by a Dilation Cap of the Mohr-Coulomb type (see Section
8).

Compression Cap, Unit Weights, Initial Conditions, Hydraulic Model
See Section 8.

14.1 Strength reduction

In Strength Reduction analysis (see the Analysis Manual), the Bolton criterion is treated by reducing
the friction angle ϕB to induce a state of collapse. The resulting factor is the strength based factor of
safety:

FSs =
tanϕB

(tanϕB)red
(14.6)

While the decision as to which parameters are reduced is quite subjective, the approach used for
the Bolton criterion is consistent with the one used for the Mohr-Coulomb criterion.

84



BOLTON

|τ|

−σ

Original

Reduced

Figure 14.2: Original and reduced Bolton envelopes.

85



MODIFIED CAM CLAY

15 MODIFIED CAM CLAY

The critical state models developed by Roscoe and his coworkers (Roscoe and Burland 1968;
Schofield and Wroth 1968) in the 1960s have been widely applied in geomechanics and form the
basis of a large number of later models. The Modified Cam Clay model of Roscoe and Burland
(1968) has been particularly popular. A slightly extended version of this model (including a finite
cohesion) is implemented in OptumG2 following the scheme proposed by Krabbenhoft and Lyamin
(2012).

The material parameters of Modified Cam Clay are to some extent interrelated and it is not possible
to distinguish as sharply between strength and stiffness parameters as for other materials. In the
following, the parameters are described in the sequence that they appear in OptumG2.

Stiffness

One of the basic premises of Modified Cam Clay is that the specific volume versus effective mean
stress in isotropic compression may be described by a relation of the type shown in Figure 15.1. In
terms of elastoplasticity theory, the normal compression line may be interpreted as an elastoplastic
branch while the response on an unloading/reloading line is elastic.

ln p’

v  

λ

1

1
κ

NCL

URL

1 kPa

vλ 

vκ 

log10σv

v 

1

Cc

’

Cs
1

Figure 15.1: Normal compression line (NCL) and unloading-reloading line (URL) in ln p′, v space
(left) and typical response in oedometeter test in terms of log σ′

v vs v .

With reference to Figure 15.1, the response in elastoplastic loading is given by

v = vλ − λ ln p′ (15.1)

while, the governing equation for unloading/reloading is

v = vκ − κ ln p′ (15.2)
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In conventional oedometer tests where the void ratio is plotted as function of the base 10 logarithm
of the vertical stress (see Figure 15.1). It may be shown that the Modified Cam Clay parameters κ
and λ are related to the conventional oedometric parameters, Cs and Cc , by

Cc = ln(10)λ = 2.3λ

Cs ≃ ln(10)κ = 2.3κ
(15.3)

While the relation between Cs and κ is not exact it is usually a good approximation (see Muir Wood
1990, for details).

For Modified Cam Clay, the incremental stress-strain relation may be written as

ε̇v =


κ

1 + e

ṗ′

p′ in elastic unloading/reloading

λ

1 + e

ṗ′

p′ in elastoplastic loading

(15.4)

where κ is the recompression index, λ is the compression index, and e is the void ratio which is
related to the volumetric strain by

v = 1 + e = (1 + e0)(1− εv ) (15.5)

where e0 is the initial void ratio and εv = −(εx + εy + εz) is the volumetric strain (positive in com-
paction).

From the elastic part of (15.4), a tangent bulk modulus can be identified as

Kt =
1 + e

κ
p′ (15.6)

By introducing a Poisson’s ratio, ν a tangent shear modulus is introduced as:

Gt =
3

2

1− 2ν

1 + ν
Kt (15.7)

Together, Kt and Gt define a tangent elastic modulus, Ct such that the general three-dimensional
elastic stress-strain relation is given by

ε̇e = Ctσ̇
′ (15.8)

In summary, the three stiffness parameters are:

• Recompression index, κ

• Compression index, λ

• Poisson’s ratio, ν

The initial void ratio, e0, is considered part of the initial conditions (see below).
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Strength

The conventional Modified Cam Clay model makes use of a hardening yield surface given by

F (p′, q,κ) = q2 −M2p′(pc − p′) (15.9)

where

p′ = −1
3
(σ′

x + σ′
y + σ′

z)

q =
[
1
2
(σx − σy )

2 + 1
2
(σy − σz)

2 + 1
2
(σz − σx)

2 + 3τ 2xy + 3τ 2yz + 3σ2
zx

] 1
2

(15.10)

with pc being the preconsolidation pressure which acts as a hardening variable. The friction param-
eter M is related to the frictional angle by

M =
3 sinϕ√

3 cos θ + sin θ sinϕ
(15.11)

where

θ = tan−1

[
1√
3

(
2
σ2 − σ3
σ1 − σ3

− 1

)]
(15.12)

is the Lode angle.

In OptumG2, cohesion is introduced by defining a new pressure variable:

p̃ = p + c/ tanϕ (15.13)

where c is the cohesion. The yield surface is then given by:

F (p̃′, q,κ) = q2 −M2p̃′(pc − p̃′) (15.14)

For fixed pc = pc,j > 0, the yield functions F (p̃′, q, pc,j) = 0 define ellipses in p′-q space with the
critical state line, q = M(p′ + c/ tanϕ), passing through the top point (see Figure 15.2).

q

p’pc,0 pc,1 pc,2c/tanφ

M 

Compaction

(hardening)

Dilation

(softening)

Critical state

(zero dilation)

Figure 15.2: Modified Cam clay yield surfaces F (p, q, pc,j) = 0 for fixed pc,j > 0.
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q

p’pc,0 pc,1 pc,2c/tanφ

M 

Compaction

(hardening)

Figure 15.3: Yield surfaces with CSL Constraint = Yes. Only the domain below failure line q =
M(p′ + c/ tanϕ) is admissible.

The yield surface hardens or softens according to the following relation between κ and the volumetric
plastic strain:

ṗc
pc

=
1 + e

λ− κ
ε̇pv (15.15)

where λ is the compression index and the plastic strains follow from the associated flow rule:

ε̇p = χ̇
∂F

∂σ′ (15.16)

Thus, for plastic compaction (ε̇pv > 0) the yield surface expands (hardens) while plastic dilation (ε̇pv <
0) leads to a shrinking (softening) of the yield surface. At the critical state, q = M(p′+ c/ tanϕ), the
plastic volumetric strain rate is zero and the yield surface undergoes no further changes (see Figure
15.2).

Finally, while the critical state line in the basic Modified Cam Clay model is approached asymptot-
ically by virtue of the hardening rule, the model implemented in OptumG2 gives the possibility to
include q −M(p′ − c/ tanϕ) ≤ 0 as an explicit constraint. In this way, the critical state line cannot
be crossed and the softening that would otherwise take place is prevented. This additional constraint
may be included via the CSL Constraint field.

In summary, the strength parameters of Cam clay are:

• Cohesion, c [kPa]

• Friction angle, ϕ

• CSL Constraint (Yes/No)

Setting CSL Constraint = Yes invokes the additional constraint q − M(p′ + c/ tanϕ) ≤ 0 (see
Figure 15.3). The CSL constraint is useful both numerically, as it eliminates potential softening, and
physically, as it limits the possibly excessive strength implied by high overconsolidation ratios. The
plastic volumetric strains associated with the CSL constraint are always zero, i.e. the flow rule of
CSL the constraint is nonassociated with a dilation angle of zero.

89



MODIFIED CAM CLAY

Initial Conditions
As for all other materials, the initial stresses can be generated by an Initial Stress analysis (manually
or as part of other analyses). This requires specification of the earth pressure coefficient K0 and is
done such that the resulting stress state is limited by the critical state line, i.e. the CSL constraint is
effectively imposed.

With a set of initial stresses at hand, the initial value of pc needs to be specified. This is done in
terms of the overconsolidation ratio:

OCR∗ =
pc,0
p̃′0

(15.17)

where pc,0 and p̃′0 are the initial preconsolidation pressure and effective mean stress respectively.
The above overconsolidation ratio differs from the usual overconsolidation ratio defined by

OCR =
σv ,c
σ̃′
v ,0

(15.18)

where σv ,c is the vertical preconsolidation stress and σ̃′
v ,0 = σ′

v ,0 + c/ tanϕ is the initial vertical
effective stress (corrected for a possible cohesion). The two different overconsolidation ratios are
related by

OCR∗ =
1 + 2K nc

0

1 + 2K oc
0

OCR (15.19)

where K nc
0 is earth the pressure coefficient for the soil in its initial normally consolidated state and

K oc
0 is the earth pressure coefficient for the soil in its current, possibly overconsolidated, state. It is

common practice to relate these coefficients to the friction angle and the overconsolidation ratio by

K nc
0 = 1− sinϕ, K oc

0 = K nc
0 OCRsinϕ (15.20)

In OptumG2, the earth pressure coefficient taken as input is the current earth pressure coefficient,
i.e. K0 = K oc

0 , while the earth pressure coefficient corresponding to normally consolidated condi-
tions is calculated automatically from (15.20).

In summary, the parameters related to the initial state are:

• Initial void ratio, e0

• Overconsolidation ratio, OCR

• Earth pressure coefficient, K0

Regarding the calculation of pc,0 the following should be noted. As a general rule, we have pc,0 =
OCR∗p̃′

0 where p̃′0 is the initial effective pressure. However, depending on the initial value of the
deviatoric stress q, the yield condition may not be satisfied for pc,0 = OCR∗p̃′

0 (see Figure 15.4). To
counter this situation and satisfy the yield condition F = 0, pc,0 is adjusted to the smallest value,
pc,min, that will ensure F (p̃′

0, q0, pc,min) = 0. This means that the actual OCR∗ (and thereby OCR)
under which the calculations are initiated may be slightly higher than that specified.
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Figure 15.4: Initial value of pc adjusted to satisfy F = 0.

Unit Weights, Hydraulic Model
See Section 8.

15.1 Limit Analysis and Strength Reduction

For the Modified Cam Clay model, Limit Analysis and Strength Reduction are conducted by calculat-
ing equivalent Tresca (Standard or Generw parameters and then proceeding as for these materials.

15.1.1 Drained conditions

Under drained conditions, the strength is governed by the material parameter ϕ. Due to the effect
of nonassociativity (the dilation is zero at the critical state) it may be shown that a limit analysis
equivalent to a full elastoplastic analysis should be conducted at a slightly lower value of ϕ (see
Krabbenhoft et al. 2012a, for details). It should also be borne in mind that localization – accompanied
by an apparent softening – is possible even for low to moderate overconsolidation ratios (Krabbenhoft
and Lyamin 2012). The ultimate limit loads found by means of Limit Analysis will therefore usually
only be in approximate agreement with those found from a full elastoplastic analysis to failure.

15.1.2 Undrained conditions

Under undrained conditions, an equivalent undrained shear strength can be calculated and the Mohr-
Coulomb or Tresca model then used to conduct the Limit Analysis. With the initial preconsolidation
pressure and effective mean stress known, the equivalent undrained shear strength is given by

su = M(θ)p̃′0

(
pc,0
2p′

c

)1−κ/λ

= M(θ)
[
1
3
(1 + 2K0)(σ

′
v ,0 + c/ tanϕ)

] [(2K0 + OCRsinϕ)OCR

2(1 + 2K0)OCRsinϕ

]1−κ/λ (15.21)

where K0 is the earth pressure coefficient and σ′
v ,0 is the initial vertical effective stress which is as-

sumed to be related to the horizontal stress by σ′
h,0 = K0σ

′
v ,0.
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From the above expression it will be seen that the undrained shear strength at the ground surface
(σv ,0 = 0) is zero unless c is finite. In most cases, this is not reasonable and some finite amount
of cohesion should therefore be used. Moreover, by varying c as well as OCR and K0 with depth,
typical undrained shear strength profiles can in most cases be matched well. Some examples are
shown in Figures 15.5 and 15.6. In these figures, OCR, K0 and c are varied with depth while the
remaining parameters are kept fixed at: κ = 0.03, λ = 0.15, ϕ = 25◦, and σ′

v ,0 = γ′d with d being
the depth coordinate and γ′ = 8 kN/m3 the effective unit weight. The Lode angle as been set to
θ = 0◦.
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Figure 15.5: Variation of undrained shear strength with depth for constant OCR, K0, and c .
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Figure 15.6: Variation of undrained shear strength with depth for linearly varying OCR, K0, and c .

15.2 Creep

For certain clays, creep (or secondary compression) accounts for a significant part of the total de-
formation. An often used empirical law states that the volumetric creep strain following full primary
consolidation is given by

εcv =
Cα

1 + e
log10(t/t90) (15.22)
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where ∆εcv is the volumetric creep strain, Cα is the secondary compression coefficient, e is the
void ratio, t90 is the time to 90% primary consolidation and t is the time at which the creep strain
is evaluated. More generally, the increment in creep stain between two times tn and tn+1 may be
calculated as

∆εcv =
Cα

1 + e
log10(tn+1/tn) (15.23)

The creep strain may be integrated to give the total settlement. For a layer of depth H we have:

∆uc = H
Cα

1 + e
log10(tn+1/tn) (15.24)

where ∆uc is the increment of vertical settlement due to creep.

In OptumG2, creep is included using the approach of Borja and Kavazanjian (1985). The total strain
is here given by

ε = εe + εp + εc (15.25)

where εe and εp are the usual elastic and plastic strains respectively and εc is the creep strain. To
describe the evolution of the creep strain with time, a creep potential, Φc , is introduced by

dΦc

dt
=

1

τ0

µ

1 + e
exp

(
−1 + e

µ
Φe

)
, Φ(0) = 0 (15.26)

where µ is a material parameter (equivalent to Cα above), e is the void ratio and τ0 is a constant
which is set internally to 1 day. The evolution of the creep strain is then given by

dεc

dt
= a

dΦc

dt
(15.27)

where a is a vector that gives the direction of the creep strain rate vector. Consistent with Modified
Cam Clay, this quantity is taken as

a =
∂F c

∂σ′ (15.28)

where

F c = p̃ +
q2

M2p̃
(15.29)

In OptumG2, creep thus requires the specification of a single additional material parameter, µ. This
parameter is specified as a fraction of λ. The ratio µ/λ typically falls in the range of 0.02 to 0.1 for a
wide variety of natural materials prone to creep (Mesri and Castro 1986).

In the one-dimensional case, the above creep law leads to a volumetric creep strain given by

εcv =
µ

1 + e
ln

(
t + τ0
τ0

)
(15.30)

The increment in creep strain over a time increment from t90 to t is thus given by

∆εcv =
µ

1 + e
ln

(
t + τ0
t90 + τ0

)
(15.31)

which, with µ = Cα/ ln(10), approaches the empirical relation (15.23) for times significantly greater
than τ0 = 1 day.
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16 HARDENING MOHR-COULOMB (HMC)

The Hardening Mohr-Coulomb (HMC) model is designed to remedy some of the shortcomings of the
standard Mohr-Coulomb model described in Section 8. The HMC model was first proposed by Muir
Wood (2004) with reference to triaxial stress space and later extended to general stress space by
Doherty and Muir Wood (2013). The version of the model implemented in OptumG2 follows these
developments closely while incorporating a number of new features that allow for a better match of
the model to experimental data.

16.1 Typical soil behavior

The typical behaviour of soil in drained triaxial compression experiments is as sketched in Figure
16.1. Compared to metals and other non-granular materials, a distinguishing feature of soils is that
the apparent stiffness in initial loading is significantly less than that observed when the sample is
later unloaded and reloaded. To characterize the initial stiffness, use is often made of the secant
modulus, E50, defined as:

E50 =
1
2
qu

ε1,50
(16.1)

where qu = (σ1 − σ3)u is the ultimate shear stress and ε1,50 is the axial strain at half the ultimate
shear stress. Similarly, in unloading/reloading, the stiffness is characterized by the modulus Eur .
It should be noted that while Eur is an elastic stiffness in the usual sense, the physics leading to
E50 comprise both elastic and plastic characteristics. In general, both Eur and E50 are pressure
dependent and increase with increasing confining pressure. The ratio between the two moduli is
usually in the range of Eur/E50 ≃ 2 to 5 or higher.

q

σ1 =  p0 + q 

σ3 = p0

ε1

qu

qu2
1

E50

Eur

ε1,50

Figure 16.1: Typical behaviour of soil in drained triaxial compression.

The ultimate shear stress is proportional to the pressure, p, by qu = Mpu where M is a mate-
rial parameter and pu is the confining pressure at the ultimate limit state. In conventional triaxial
compression where the stress path is such that dq/dp = 3, the ultimate shear stress for a purely
frictional material is given by

qu =
3M

3−M
p0 (16.2)
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where p0 is the confining pressure. Using the relation between M and the Mohr-Coulomb friction
angle ϕ in triaxial compression:

sinϕ =
3M

6 +M
or M =

6 sinϕ

3− sinϕ
, (16.3)

the ultimate shear stress is given by

qu =
2 sinϕ

1− sinϕ
p0 (16.4)

In the general case, the relation between M and ϕ is given by

M =
3 sinϕ√

3 cos θ + sin θ sinϕ
(16.5)

where

θ = tan−1

[
1√
3

(
2
σ2 − σ3
σ1 − σ3

− 1

)]
(16.6)

is the Lode angle (equal to −30◦ in triaxial compression).

Regarding the strains, it is usually observed that the dilation which occurs at appreciable levels of
shear strain is a function of the material density. Dense soils may undergo a significant amount of
dilation under continued shearing while less dense soils will tend to dilate less or may even contract
plastically, i.e. undergo negative dilation. These characteristics are sketched in 16.2.
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Figure 16.2: Typical shear-volumetric strain behavior in triaxial compression.

While many models operate with a constant dilation, the actual dilation observed in experiments is
in fact quite variable. A common approach to describe this variability is to link the current dilation to
the current stress ratio q/p. A common stress-dilatancy relations is that of Taylor:

ε̇pv
ε̇ps

= M − N − q/p (16.7)

where N is the dilation at the ultimate limit state, i.e. for q/p = M . With realistic pairs of M and N ,
the behavior will initially, for low q/p, be compactive with ε̇pv/ε̇

p
s = M − N . For larger ratios of q/p

and depending on the values of M and N , the behavior may become dilative or remain compactive
up to the ultimate limit state. Following (16.5), N can be interpreted in terms of a Mohr-Coulomb
dilation angle, ψ, via the relation

N =
3 sinψ√

3 cos θ + sin θ sinψ
(16.8)
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For triaxial compression (θ = −30◦) we have

ε̇pv
ε̇ps

=
6 sinϕ

3− sinϕ
− 6 sinψ

3− sinψ
− q/p (16.9)

It is often observed that ϕ and ψ are quite closely correlated. For sands, the rule of thumb ϕ− ψ =
30◦ is often cited.

Alternatively, one may wish to use a constant dilation throughout. The HMC model implemented in
OptumG2 offers this possibility as well. In that case, the ratio between the plastic volumetric and
shear strain rates is simply:

ε̇pv
ε̇ps

= − 6 sinψ

3− sinψ
(16.10)

independent of q/p.

On the basis of the preceding discussion, it can be concluded that any credible soil model should
involve at least six parameters:

• Two elastic parameters, for example Eur and νur .

• Two strength parameters and a dilation parameter, for example the Mohr-Coulomb c , ϕ and ψ.

• A ‘fitting parameter’ that reproduces a user specified secant modulus E50.

In addition, it is desirable to include pressure dependence into Eur and E50. In OptumG2 this is
done via two additional parameters: a reference pressure pref and an exponent m. The full set of
parameters for the HMC model are given below.

Stiffness

The HMC model makes use of three stiffness parameters which can be entered in two different ways,
either (Set A):

• Eur ,ref [MPa] : Young’s modulus in unloading/reloading at reference pressure pref.

• νur : Poisson’s ratio in unloading/reloading at reference pressure pref.

• E50,ref [MPa] : Secant Young’s modulus in triaxial compression under confining pressure σ3 = pref.

or (Set B):

• Gur ,ref [MPa] : Shear modulus corresponding to unloading/reloading at reference pressure pref.

• Kur ,ref [MPa] : Bulk modulus corresponding to unloading/reloading at reference pressure pref.

• G50,ref [MPa] : Secant shear modulus in triaxial compression under confining pressure σ3 =
pref.

It should be noted that while Eur ,ref, νur , Gur ,ref and Kur ,ref are true elastic moduli and thus related via
the usual elastic relations [Eur ,ref = 2(1 + νur)Gur ,ref, etc], the elastoplastic secant moduli, E50,ref and
G50,ref, are not related in an obvious linear fashion.
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Strength
The strength parameters are the same as for the standard Mohr-Coulomb model:

• c [kPa] : Cohesion.

• ϕ [◦] : Friction angle.

Flow rule
• Flow Rule : Taylor/Constant Dilation

• ψ [◦] : Dilation angle.

For Flow Rule = Taylor, Taylor’s stress-dilatancy relation (16.17) is used. This implies that the di-
lation increases as the ultimate limit state is approached. At the ultimate limit state, the dilation is
characterized by the angle ψ. In contrast, for Flow Rule = Constant Dilation, the dilation is constant
throughout, c.f. Eqn. (16.10).

It is possible to enforce a Dilation Cap following the Mohr-Coulomb material. Once the critical strain
is reached (Volumetric or Shear), Flow Rule = Constant Dilation with ψ = 0 is enforced.

Pressure dependence
Pressure dependence of the stiffness moduli is included via the following relations:

Eur = Eur ,refΠ(σ3)

Gur = Gur ,refΠ(σ3)

Kur = Kur ,refΠ(σ3)

(16.11)

and
E50 = E50,refΠ(σ3)

G50 = G50,refΠ(σ3)
(16.12)

where

Π(σ3) =

(
σ3 + c/ tanϕ

pref + c/ tanϕ

)m

(16.13)

with σ3 being the minor principal stress. The associated parameters are:

• pref [kPa] : Reference pressure (confining pressure in triaxial compression test).

• m : Fitting parameter.

The parameter m depends on the soil type. For soft clays, m should be chosen as m ≈ 1 (giving rise
to relations similar to those used in the Modified Cam Clay model) while for sands and other coarse
grained materials m ≈ 0.5 is appropriate.

Unit Weights, Initial Conditions, Hydraulic Model
See Section 8.
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Figure 16.3: Hardening, compaction and dilation in the HMC model.

16.2 Model overview

The basic premise of the HMC model is sketched in Figure 16.3. In contrast to the standard Mohr-
Coulomb model which consists of a single elastic region limited by the failure criterion, the HMC
model operates with three regions in p–q space:

1. An elastic region in which no plastic or otherwise irreversible straining takes place.

2. A compaction region where the soil undergoes compaction, i.e. negative dilation.

3. A dilation region where the soil undergoes plastic dilation.

Consider an initial stress point as indicated by A in Figure 16.3. Shear loading first implies an initially
elastic response up to point B where the initial yield surface is reached. From point A to point B, the
yield surface hardens, implying a decrease of stiffness, while the flow rule is such that a compaction
takes place. As the loading continues, point C is reached. At this point, the behavior switches from
being compactive to being dilative and remains so up to point D at which failure occurs, i.e. the yield
surface seizes to harden and remains stationary.

16.2.1 Initial state and small-strain stiffness

In practice, the HMC model is initialized as follows:

1. The initial stress state is first calculated on the basis of the specified K0. This is either done
automatically (if no From stage is specified in Elastoplastic or Multiplier Elastoplastic analysis)
or via a separate Initial Stress stage.

2. On the basis of the stress state at each point, a parameter µmin is calculated such that the
stress state will satisfy the initial yield criterion F0 = q0 − µmin(p

′
0 + a) = 0 where subscript 0

refers to the initial state.

3. Finally, we set µ0 = µmin+δµ where δµ is a user defined parameter and use F = q−µ0(p
′+a)

as the initial yield surface. This means that the initial point will be below yield, i.e. q0−µ0(p
′
0+

a) < 0 for δµ > 0. This situation is sketched in Figure 16.4.
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Figure 16.4: Initial state.

In OptumG2, rather than specifying δµ, an equivalent friction angle δϕ is specified under Initial
Conditions and the equivalent δµ calculated by

δµ =
3 sin δϕ√

3 cos θ + sin θ sin δϕ
(16.14)

where θ is the Lode angle (16.6). The existence of a finite initial elastic range can be correlated to
the concept of small-strain stiffness, i.e. the phenomenon that soils at very low levels of strain are
much stiffer than at the strain levels usually experienced in standard laboratory tests and in typical
boundary value problems. This is discussed in detail by Muir Wood (1990) and Doherty and Muir
Wood (2013) with respect to the original Extended Mohr-Coulomb model from which the HMC model
derives. While the values of δϕ leading to the desired stiffness degradation with strain is material
dependent and must be calibrated in each individual case (from data that normally not is available),
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Figure 16.5: Experimental results and calibration for small-strain stiffness for two different tests on
sand (after Doherty and Muir Wood 2013).
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the results of Doherty and Muir Wood (2013) appear to indicate that a value of δϕ ≃ 1◦ (together
with reasonable values of Eur and E50) may be quite typical.

Some of the experimental results and calibrations presented by Doherty and Muir Wood (2013) are
shown in Figure 16.5. While these results reveal a rather dramatic degradation of stiffness with
shear strain, the effect of small-strain stiffness is for typical boundary value problems (foundations,
retaining wall, etc) usually fairly limited.

16.3 Calibration to Erksak sand

The HMC model has been calibrated to drained triaxial tests on Erksak sand at three different den-
sities and at three different confining pressures. In all cases, the reference pressure was set to the
default value of pref = 100 kPa. The parameters used are given in Table 16.1 and the resulting fits
are shown in Figure 16.6.

Loose Medium Dense
p0 (kPa) 200 60 130

Eur ,ref (MPa) 39 75 150

νur 0.3 0.35 0.40

E50,ref (MPa) 13 25 50

c (kPa) 0 0 0

ϕ (◦) 27 37 41

Flow Rule Taylor Taylor Taylor
ψ (◦) −4 11 17

pref (kPa) 100 100 100

m 0.5 0.5 0.5

Table 16.1: HMC model parameters for loose, medium and dense Erksak sand.

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.5

1.0

1.5

2.0

S
tr

e
ss

 r
a

ti
o

, q
/p

−0.02

−0.01

0

0.01

0.02

Shear strain, εs

V
o

lu
m

e
tr

ic
 s

tr
a

in
, 
ε

v

Loose

Medium

Dense

Loose

Medium

Dense

0.03

Shear strain, εs

0 0.01 0.02 0.03 0.04 0.05 0.06

Figure 16.6: HMC fits to drained triaxial test data for loose, medium and dense Erksak sand (test
data from Yu 2006).
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16.4 Calibration to Lund sand

A key feature of the HMC model is that the stiffness moduli are pressure dependent. In this way, a
set of parameters calibrated under one confining pressure should in principle be valid for all pres-
sures. To verify this assertion, the model is first calibrated to a dense Lund sand under a confining
pressure of p0 = 160 kPa using pref = 160 kPa. Simulations are then run for confining pressures of
p0 = 40, 80, 320 and 640 kPa using the same parameters, including pref.

The parameter set and the resulting fits are shown in Table 16.2 and Figure 16.7 respectively. As
seen, the model generalizes rather well to both higher and lower pressures than originally calibrated
for.

p0 (kPa) 40, 80, 160, 320, 640

Eur ,ref (MPa) 90

νur 0.4

E50,ref (MPa) 30

c (kPa) 0

ϕ (◦) 44

Flow Rule Taylor
ψ (◦) 19

pref (kPa) 160

m 0.55

Table 16.2: HMC model parameters for Lund sand.
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Figure 16.7: HMC fits to drained triaxial test data for dense Lund sand (test data from Ahadi and
Krenk 2000). The model is fitted for a confining pressure of 160 kPa while the response at higher
and lower pressures are predictions.
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16.5 Calibrating Eur and E50

The figures below illustrate the relative independence of Eur ,ref and E50,ref for the Medium sand
in Table 16.1. In the figures on the left, the reference unloading/reloading modulus is fixed at
Eur ,ref = 75MPa while E50,ref is varied between 1/5 to 1/2 of Eur ,ref. This has an immediate effect
on the response in loading whereas the response in unloading/reloading is governed solely by Eur .
Conversely, in the figures on the right, E50,ref is kept constant at 25 MPa while Eur ,ref is varied from 2
to 5 times E50,ref. This has a much less dramatic effect on the results, except in unloading where the
stiffness again is governed solely by Eur .
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Figure 16.8: Model response (Medium sand in Table 16.1) as function of Eur ,ref and E50,ref.
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16.6 Undrained behavior

Under undrained conditions (Drainage Condition = Drained/Undrained in combination with Time
Scope = Short Term), the overall behaviour depends on a combination of the strength and stiffness
parameters. In particular, for a dilation angle of ψ > 0, the excess pore pressures will increases
indefinitely resulting in an infinite strength (unless a cavitation cut-off is introduced in which case
the strength will be finite). Conversely, for ψ < 0, the strength will eventually decrease to zero
corresponding to static liquefaction. For the special case of ψ = 0, the strength is finite and depends
on a combination of the strength and stiffness parameters. An example of the influence of the dilation
angle on the overall response is shown in Figure 16.9.
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Figure 16.9: Response of HMC under undrained conditions for three materials with ψ = −5◦, 0◦,
and 5◦.

16.7 Governing equations

In the following, the governing equations of the HMC model are briefly summarized.

The basic premise of the HMC model is sketched in Figure 16.3. The current mobilized strength is
characterized by the line q/(p + a) = µ where µ is the current mobilized friction coefficient and a
is an attraction (tensile strength). As hardening proceeds, i.e. as µ increases, the constant volume
line q/(p + a) = M − N is reached. At this state, the dilation is zero. Hardening progresses further
until q/(p + a) = M at which point the material behaves in a perfectly plastic manner with dilation
coefficient N .

To capture this behaviour, and to account for elastic unloading, a hardening yield surface is intro-
duced. This is given by

F = q − µ(p + a) (16.15)

What remains is to specify an appropriate flow rule that leads to the behaviour described above and
to construct a hardening rule that prevents any further hardening of the yield surface at q/(p+ a) =
M .
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Concerning the former, an appropriate plastic potential is (Doherty and Muir Wood 2013; Muir Wood
2004):

G = q − (M − N)(p + a) ln
pr

p + a
(16.16)

where pr should be chosen such that G passes through the current stress point, i.e. pr = (p +

a)e
µ

M−N . This plastic potential implies the stress-dilatancy relation of Taylor:

ε̇pv = λ̇(M − N − µ)

ε̇ps = λ̇

}
=⇒ ε̇pv

ε̇ps
= M − N − µ (16.17)

where εpv and εps are the plastic volumetric and shear strains respectively.

Secondly, the stress ratio in elastoplastic loading is assumed to depend on the plastic shear strain
as:

µ

M
=

εps
βM + εps

(16.18)

where β is a model parameter. We note that βM in fact is the plastic shear strain at half the ultimate
stress ratio. The incremental form of the above leads to the hardening rule:

µ̇ =
(1− µ/M)2

β
ε̇ps (16.19)

where it is evident that hardening terminates at µ = M . The above hardening rule generally leads
to stress-strain curves similar to those observed experimentally.

Finally, the behaviour within the elastic domain is based on linear elasticity:

εev =
1

Kur
p, εes =

1

3Gur
q (16.20)

16.7.1 Pressure dependence

The version of the HMC model implemented in OptumG2 differs from the original model in two ways.

Firstly, the elastic moduli are pressure dependent following (16.11).

Secondly, the hardening parameter β is adjusted to reproduce the user specified secant moduli,
E50,ref or G50,ref. With E50,ref specified, the expression for β is:

β =


3
2
(p + c/ tanϕ)

9−M

9− (M − N)M ln 2− 3N

1− E50/Eur

E50
, for Flow Rule = Taylor

3
2
(p + c/ tanϕ)

9−M

9− (3− N)M ln 2− 3N

1− E50/Eur

E50
, for Flow Rule = Constant Dilation

while the expression consistent with a user specified G50,ref is:

β = 1
6
(p + c/ tanϕ)

3−M

3−M ln 2

1− G50/Gur

G50
, independent of Flow Rule, (16.21)

where E50 and G50 are pressure dependent following (16.12). We note that for m = 1, β becomes
constant in the special case where the pressure remains constant and equal to the minor principal
stress. In that case, the original HMC model of Muir Wood (2004) is recovered exactly.
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16.8 Incremental stress-strain relations

Assuming that the initial stress is at the yield surface (δϕ = 0), the incremental stress-strain relations
for triaxial compression are given by

ε̇ = (Ce + Cp)σ̇ (16.22)

where
ε = (εv , εs)

T, σ = (p, q)T, (16.23)

Ce =

 K−1
ur 0

0 (3Gur)
−1

 , Cp =
1

H

 −ηD D

−η 1

 (16.24)

with

H =
(p + c/ tanϕ)(1− η/M)2

β
, (16.25)

D =

{
M − N − η, for Flow Rule = Taylor

−N , for Flow Rule = Constant Dilation,

η = q/(p + c/ tanϕ), (16.26)

and

M =
6 sinϕ

3− sinϕ
, N =

6 sinψ

3− sinψ
. (16.27)

16.9 Limit Analysis and Strength Reduction

Limit Analysis and Strength Reduction are carried out using equivalent Mohr-Coulomb parameters.
The resulting limit loads may differ somewhat from those of a full elastoplastic analysis. Under
drained conditions, the difference is due to the effects of nonassociativity. The same observations
as for the standard Mohr-Coulomb model here apply. In particular, limit loads may be estimated
using Davis parameters (see Section 8.2).

For undrained analysis, similar observations hold. The HMC plastic potential is essentially of the
Drucker-Prager type and thus differs slightly from that used in the standard Mohr-Coulomb model.
However, for the constant mean effective stress conditions that exist under undrained conditions, the
effect on the bearing capacity is much less than under drained conditions.
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17 LINEAR ELASTIC

The Linear Elastic material type implements Hooke’s law and does not involve any limitations on the
strength in the form of yield conditions or similar. All other properties – Drainage, Stiffness, Unit
Weights, Initial Conditions, and Hydraulic Model are as for the Mohr-Coulomb material (see Section
8).
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18 RIGID

The Rigid material type describes a perfectly rigid and infinitely strong material. Its only properties
– Drainage, Unit Weights, and Hydraulic Model are as for the Mohr-Coulomb material (see Section
8). The Rigid material is convenient for the modeling of foundations, retaining walls and similar
structures provided that one is confident that the failure as well as the majority of the deformations
take place elsewhere.
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19 FLUIDS

In OptumG2, Fluids are special cases of Solids. Internally, they are modeled as elastoplastic Solids
capable of sustaining an indefinite amount of hydrostatic compression and no shear stress. The
elastic parameter is the bulk modulus K . Internally, Poisson’s ratio is chosen to balance the re-
quirement that the material should be incompressible (ν = 0.5) together the requirement that the
Young’s modulus E = 3K (1−2ν) should remain finite. The only other material parameter is the unit
weight, γ. For the default material Water, the parameters are K = 2, 200MPa and γ = 9.8 kN/m3

corresponding to water under standard atmospheric conditions. Furthermore, Fluids are assigned
an artificial hydraulic conductivity of 1,000 times the largest hydraulic conductivity used in the stage
for any Soild material.
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20 PLATES

Plates are structural elements used to model elements whose thickness is sufficiently small to be
negligible compared to the overall problems dimensions. Common examples are foundation plates
and sheet pile walls. Plates may also be useful in a number of other situations to model objects
whose overall properties are not well defined other than they are very stiff (or very flexible) compared
to the surrounding solid materials. Two types of Plates are available: Plate and Rigid Plate.

20.1 Plate

The material type Plate is an elastoplastic plate which in plane strain is equivalent to a standard
Euler-Bernoulli beam.

The model parameters can be entered in two different formats referred to as Parameter Sets A and
B respectively. These are shown in Figure 20.1 which also summarizes the relation between the
parameters of the different sets.

t

b  = 100 cm = 1 m

Sectional Area, A = b × t = 100 × t  [cm2/m]

Moment of Inertia, I =    b × t 

3 = 100 ×    t 

3  [cm4/m]1
12

1
12

Plastic Section Modulus, S =    b × t 

2 = 100 ×    t 

2  [cm3/m]1
4

1
4

Yield Force, np = A × σ0  [kN/m]

Yield Moment, mp = S × σ0  [kNm/m]

Weight, w = A × ρ  = 0.01 × t × ρ [kg/m/m]

x

y

For thickness t  in cm and density ρ in kg/m3 :

Figure 20.1: Parameter Sets A and B (top) and relation between the parameters of the two sets for
a solid rectangular section with t = 30 cm.

The two sets share two properties: Yield Envelope and Permeable (Yes/No). The latter setting con-
cerns Seepage analysis and determines whether the plate will be considered as an impermeable
barrier or a fully permeable boundary between two solids. Note that the Permeable setting is a ma-
terial setting and relates to all plates assigned the material in all stages.
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Regarding the yield envelope, two options are available. Square (the default setting) imposes the
following yield criterion: ∣∣∣∣ mmp

∣∣∣∣ ≤ 1,

∣∣∣∣ nnp
∣∣∣∣ ≤ 1 (20.1)

A more conservative estimate of the strength of the wall may be realized by use of the Diamond yield
criterion: ∣∣∣∣ mmp

∣∣∣∣+ ∣∣∣∣ nnp
∣∣∣∣ ≤ 1 (20.2)

The two yield criteria are shown in Figure 20.2. Usually, the difference in results between the two
criteria is relatively minor as most problems relevant to geotechnics tend to be dominated by bending.

m/mp

n/np

1

1

-1

-1

Square

Diamond

Figure 20.2: Square and Diamond yield criteria.

20.2 Rigid Plate

The Rigid Plate material type is a special case of the material described above. It involves only two
parameters: weight and Permeable (Yes/No). This element is convenient in cases where the exact
properties of the actual plate are not well defined, but where it can be assumed that it has a much
higher strength and stiffness than the surrounding material.
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20.3 Additional features

Plates may be assigned interface materials from the Solids category and hinges which in them-
selves require a set of material parameters (see Section 23). Both these additional features may be
accessed and edited via the property window by selecting a given plate. An example is shown in
Figure 20.3.

Interfaces

Hinge

Figure 20.3: Beams with interfaces and a hinge.

OptumG2 offers two possibilities for defining the Reduction Factor, r , used to modify the interface
strength parameters. These may be set under Physical Parameters in Project (see Figure 20.4). For
the Mohr-Coulomb model, the default option “c, phi” reduces the cohesion and friction angle by the
factor r . This follows many codes of practice including Eurocode 7. The second option “c, tan(phi)”
reduces c and tanϕ by the specified factor r . The rules for other models are given in the table below.

Figure 20.4: Interface Strength Reduction option.
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Original Reduced Parameters Reduced Parameters

Parameters Option = c, phi Option = c, tan(phi)

Mohr-Coulomb c , ϕ rc , rϕ rc , arctan(r tanϕ)

Drucker-Prager k , M rk , rM rk , rM

Tresca (Standard) su rsu rsu

Tresca (Generalized) suc , sue rsuc , rsue rsuc , rsue

AUS suc rsuc rsuc

Hoek-Brown σci , mi rσci , rmi rσci , rmi

GSK c , ϕ1, ϕ2 rc , rϕ1, rϕ2 rc , arctan(r tanϕ1), arctan(r tanϕ2)

Bolton ϕcv rϕcv arctan(r tanϕcv)

Modified Cam Clay ϕ rϕ arctan(r tanϕ)

HMC c , ϕ rc , rϕ rc , arctan(r tanϕ)

Table 20.1: Modified interface strength parameters.
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21 GEOGRIDS

Geogrids are similar to Plates, but cannot sustain uniaxial compression and offer no resistance to
bending. As such, the material parameters concern only the tensile stiffness and strength (see Fig-
ure 21.1). Geogrids are considered weightless and may be either fully permeable or impermeable.

b = 100 cm = 1 m

t 

Sectional Area, A = b × t = 100 × t  [cm2/m]

Yield Force, np = A × σ0  [kN/m]

x

y

For thickness t  in cm:

Figure 21.1: Parameter Sets A and B (top) and relation between the parameters of the two sets for
a solid rectangular section with t = 0.1 cm.

Besides geogrids, geotextiles, thin membranes, etc, Geogrid elements can also be used to account
for grouting in connection with soil anchors (see the Examples Manual).

As for Plates (see the previous section), it it possible to assign arbitrary Solid materials to the inter-
faces of Geogrids and to apply a strength reduction factor r .
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22 CONNECTORS

Materials in the Connectors category can be assigned to Connectors and Fixed End Anchors. Con-
nectors are one-dimensional truss elements that do not interact with the solid domain. In other
words, they may be viewed as existing in a layer outside the solid domain. These elements are
commonly used to account for anchoring systems. As for Geogrids, Connectors can only sustain
normal forces. The material parameters can be entered via two Parameter Sets as shown in Figure
22.1. All parameters refer to the individual rods. Similar, the results reported are for the individual
Connectors.

Sectional Area, A

spacing

Out-of-plane direction, z

x

y

spacing

Figure 22.1: Connector with parameters defined via Set A or B.
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23 HINGES

Hinges can be applied at the end of plates (see Section 20). These are elastoplastic elements
defined by two material parameters:

• Rotational Stiffness, k (kNm/m/rad)

• Yield Moment, mp (kNm/m)

The moment-rotation behavior of Hinge elements is shown in Figure 23.1. For moments |m| < mp,
the mutual rotation of the Plates on either side of the hinge is given by

θ =
m

k
(23.1)

For moments |m| = mp, the hinge behaves in a perfectly plastic manner with zero rotational stiffness.
The default settings, k = 0 and mp = 0, thus correspond to a standard hinge not offering any
resistance to rotation. Similarly, for k = mp = ∞ a standard rigid connection is reproduced.

m

θ

mp

−mp

k

Figure 23.1: Moment-rotation behavior of Hinge element.
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24 PILE ROWS

While the rigorous modeling of piles subjected to arbitrary loading (lateral, axial, moment) requires a
full three-dimensional analysis, a number of special cases can be handled in two spatial dimensions.
A single pile subjected to axial loading can be modeled as an axisymmetric structure. Furthermore,
a pile row subjected to more general loading can be modeled using a Plate element in an plane
strain analysis – provided the spacing between the piles is sufficiently small for the row to behave
more or less as a monolithic structure.

The case of pile row with a spacing in the order of several pile diameters is more challenging to
model. On one hand, the individual piles interact with the soil in much the same way as a Plate
element. On the other hand, the soil may flow between the piles. Indeed, if the spacing is sufficiently
large, part of the soil between the piles will unaffected by the pile movement.

The Pile Row feature available in OptumG2 attempts to cater for this partial interaction between the
piles and the soil. Following Sluis et al. (2014), the basic idea is to consider the soil and the piles
as being located in two different ‘layers’ similar to what is the case with Connectors. However, while
Connectors have no interaction with the soil at all, the piles in a Pile Row are connected to the soil
by means of springs, the properties of which imply more or less of an interaction. The principle is
sketched in Figure 24.1.

z

y

x

z

A

A

L

B

Py

Px

Py

Px

x

y

Figure 24.1: Partial interaction between pile and soil. The pile and the soil nodes are independent
but have the same coordinates

Three different types of springs, accounting for three different types of interaction are considered:
axial (A) for interaction in the direction of the pile, lateral (L) for interaction perpendicular to the pile,
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and base (B) for interaction between the soil and the base of the piles in the row. The interaction
springs all have a finite strength. In the following, the parameters associated with Pile Rows are
discussed in detail.

24.1 Piles

The pile of the Pile Row are modeled using standard beam elements. The input parameters are
those of the individual piles. Three different types of piles requiring input of the specific dimensions
are available: Massive Circular, Circular Tube, and Massive Square. In addition, the cross section
area and moment of inertia for a pile with an arbitrary cross section can be entered via the User
option. The different parameter sets are shown in Figure 24.2.

Figure 24.2: Parameters for Pile Rows (Piles).

Following Sluis et al. (2014), the Young’s modulus and unit weight used internally for the beam
elements are calculated as:

Ê =
EA

Deqs
, γ̂ = γ

A

s
(24.1)

where

Deq =

√
12I

A
(24.2)

and s is the spacing.

Figure 24.3: Parameters for Pile Rows (Soil-Pile Stiffness).
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24.2 Soil-Pile Stiffness

Following, Sluis et al. (2014), the stiffness of the springs connecting the pile and the soil are calcu-
lated as:

KA = IFSA
Gsoil

s

KL = IFSL
Gsoil

s

KB = IFSB
Gsoil

s

Deq

2

(24.3)

where KA, KL and KB are the axial, lateral and base springs respectively, IFS are interaction factors
and Gsoil is the shear modulus of the soil. Sluis et al. (2014) suggests the following interaction factors:

IFSA = 2.5

(
s

Deq

)−0.75

IFSL = 2.5

(
s

Deq

)−0.75

IFSB = 25

(
s

Deq

)−0.75

(24.4)

These are the interaction factors implemented with the Default option (see Figure 24.3). Alternatively,
the interaction factors or the spring stiffnesses can be entered manually.

24.3 Soil-Pile Strength

All the interaction springs have a finite strength that can be specified as shown in Figure 24.4. The
base spring cannot sustain tension.

Figure 24.4: Parameters for Pile Rows (Soil-Pile Strength).

24.4 Additional properties

24.5 Base

For a given Pile Row segment, the base can either be specified as being located at the end (E) of the
beginning (B) of the segment (see Figure 24.5). Alternatively, None specifies that no base stiffness
and strength are available. A Pile Row base is denoted by a gray arrow as shown in Figure 24.5.
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Figure 24.5: Pile Row Base.

24.6 Elastic Zone

Following Sluis et al. (2014), the elements in a finite zone around the pile are assumed to be elastic.
By default, the width of this elastic zone is Deq/2 (see Figure 24.6). A user defined width of the elastic

Deq

Figure 24.6: Elastic zone.
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zone can be set by selecting User under Elastic Zone. Alternatively, no elastic zone is included by
selecting None.
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25 NAIL ROWS

Nail Rows are as special case of Pile Rows corresponding to the settings shown in Figure 25.1. The
user input are: Nail Diameter (cm), Young’s Modulus (MPa), Spacing (m) and Axial Strength along
the Nail (kN/m). The base strength is zero while the lateral strength is unlimited, implying failure of
the surrounding soil rather than in the springs connecting the Nail to the soil. Finally, in contrast to
Piles, no elastic zone around the Nail is considered.

Figure 25.1: Nail Row (left) and equivalent Pile Row (right).
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