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STRESS AND STRAIN

1 STRESS AND STRAIN

In this section, the basic concepts of the mechanics of solids are briefly summarized. For later
reference, we consider a solid with volume V and boundary S subjected to body forces b. On part
of the boundary, Su, the displacements are prescribed while on the other part, Sσ, the tractions, t,
are prescribed.

b

t

V

S

Su

Sσ

t = 0

Sσ

n

Figure 1.1: Solid of volume V with boundary S = Su ∪ Sσ subjected to tractions t on Sσ and
supported on Su.

Standard continuum mechanics sign conventions are adopted throughout, i.e. tensile stresses and
strains are positive.

1.1 Stress and equilibrium

In the general three-dimensional case, the state of stress at a point is defined in terms of the six-
dimensional stress vector:

σ = (σx , σy , σz , τxy , τyz , τzx)
T (1.1)

In plane strain, two of the shear stresses are zero. Let z be the out-of-plane direction. We then have:

σ = (σx , σy , σz , τxy )
T (1.2)

For a two-dimensional plane strain body, the equilibrium equations are given by

∂σx
∂x

+
∂τxy
∂y

+ bx = 0

∂σy
∂y

+
∂τxy
∂x

+ by = 0

(1.3)

where b = (bx , by )
T are body forces. These equations may be expressed in matrix form as

∇Tσ + b = 0, in V (1.4)

where

∇T =

[
∂/∂x 0 0 ∂/∂y

0 ∂/∂y 0 ∂/∂x

]
(1.5)

7



STRESS AND STRAIN

The static boundary conditions may be written as

nxσx + nyτxy = tx

nyσy + nxτxy = ty
(1.6)

where tx and ty are the components of the traction vector t and n = (nx , ny )
T is the outward normal

to the boundary. These equations may be expressed in matrix form as

PTσ = t, on Sσ (1.7)

where

PT =

[
nx 0 ny

0 ny nx

]
(1.8)

1.2 Displacement, strain and compatibility

In the general three-dimensional case, the state of strain at a point is defined in terms of the six-
dimensional strain vector:

ε = (εx , εy , εz , γxy , γxz , γyz)
T (1.9)

In plane strain, the out-of-plane strain as well as two of the shear strains are zero. Let z be the
out-of-plane direction. We then have:

ε = (εx , εy , 0, γxy )
T (1.10)

Assuming small displacements, the strains are related to the displacements by

εx =
∂ux
∂x

εy =
∂uy
∂y

εz = 0

γxy =
∂ux
∂y

+
∂uy
∂x

(1.11)

where u = (ux , uy )
T are the displacements. This may also be written as

ε = ∇u (1.12)

where ∇ is given by (1.5). The fact that ∇ serves a dual purpose: as the equilibrium operator and
as the strain-displacement operator is fundamental to much of the discussion that follows and indeed
to much of the theory behind OptumG2.

The kinematic boundary conditions may be expressed as

u = ub, on Su (1.13)

where ub are the boundary displacements.

8



STRESS AND STRAIN

1.3 Principle of virtual work

In what follows, extensive use will be made of the principle of virtual work. This principle may be
stated as follows. Consider a stress field, σa, that satisfies the static equilibrium and boundary
conditions:

∇Tσa + ba = 0 in V

PTσa = ta on Sσ

(1.14)

Furthermore, consider a displacement field, ub, and a strain field related by:

εb = ∇ub (1.15)

The following identity then holds:∫
V

σT
aεb dV −

∫
V

bT
aub dV −

∫
Sσ

tT
aub dS = 0 (1.16)

This is the principle of virtual work. It is emphasized that the stress and displacement/strain fields
are not necessarily related. Indeed, the principle of virtual work makes no assumptions on constitu-
tive behaviour at all.

A different statement of the principle of virtual work is as follows. Let σ be a stress field satisfying∫
V

σTε dV −
∫
V

bTu dV −
∫
Sσ

tTu dS = 0 (1.17)

for all displacement and strain fields with
ε = ∇u (1.18)

Then
∇Tσ + b = 0 in V

PTσ = t on Sσ

(1.19)

This statement of the principle of virtual work is the heart of the standard finite element method.

9



PLASTICITY THEORY

2 PLASTICITY THEORY

The strength and deformation characteristics of geomaterials are usually accounted for by a combi-
nation of elasticity and plasticity as summarized in the following.

2.1 Stress and yield

The fundamental premise of plasticity theory is that there exists a threshold beyond which stress
states cannot exist. This limit is defined by a yield function F (σ) such that F (σ) ≤ 0 defines the
domain of permissible stress states while F (σ) = 0 defines the yield surface (see Figure 2.1). The
yield surface may be open or closed but is always convex.

σI

σII
F = 0

F < 0

F > 0 (inadmissible)

Figure 2.1: Yield surface.

2.2 Strain and flow

Classic plasticity theory operates with the postulate of an additive decomposition of the total strain
into elastic and plastic parts:

ε = εe + εp (2.1)

where ε are the total strains, εe are the elastic strains and εp are the plastic strains.

The elastic strains are related to the stresses via a relation of the type

εe = Cσ (2.2)

where C is an elastic compliance modulus.

The rate of change in plastic strain is usually specified via a flow rule of the type

ε̇p = λ̇
∂G

∂σ
(2.3)

where λ̇ ≥ 0 is a plastic multiplier and G is a flow potential. While the value of λ̇ is unknown a priori,
it must be such that plastic strains occur only for F (σ) = 0, i.e. when the stress state is at yield.
This is guaranteed by the condition:

λ̇F (σ) = 0 (2.4)

10



PLASTICITY THEORY

Regarding the flow potential, there are in principle no limits to the form of G and whatever fits
the experiments the best may be chosen. However, from a mathematical point of view, there are
significant benefits from choosing G = F . The flow rule is then referred to as being associated
as opposed to the general nonassociated case where G ̸= F . Also, in practice, even if F and G
are not identical, G is often of the same functional form as F but involves a different set of material
parameters.

2.3 Hardening

While the most basic material models make use of a steady yield surface, more advanced models
incorporate one or more mechanisms of hardening. From the point of the view of the yield function,
hardening can be modeled by assuming the dependence of set of additional stress-like hardening
variables κ = (κ1, ... ,κn)

T. The elastic domain is then given by

F (σ,κ) ≤ 0 (2.5)

while F (σ,κ) = 0 again defines the yield surface.

The evolution of the hardening variables is specified by a hardening rule which may be written in the
following general form:

κ̇ = λ̇h(σ,κ) (2.6)

where h = (h1, ... , hn)
T is an array of hardening functions. This rule implies that hardening occurs

as a result of plastic straining only (λ̇ > 0).

2.4 Summary

The above constitutive relations can be expressed in the following concise incremental format:

ε̇ = Cσ̇ + λ̇∇σG (σ,κ)

κ̇ = λ̇h(σ,κ)

F (σ,κ) ≤ 0, λ̇F (σ,κ) = 0, λ̇ ≥ 0

(2.7)

where the notation ∇x f = ∂f /∂x has been used to denote the gradient of a function f with respect
to x .

11



PORE PRESSURES AND EFFECTIVE STRESS

3 PORE PRESSURES AND EFFECTIVE STRESS

A distinguishing feature of geomechanics problems is that pore pressures often play an important
role and must be accounted for in detail in many analyses. In a fluid-saturated medium, the total
pore fluid pressure, pf , can be divided into two parts:

pf = ps + pe (3.1)

where ps is the pore pressure due to seepage or a static water table and pe is an excess pore pres-
sure generated in response to the deformation of the material. In the following, we will assume that
pore pressures are negative, corresponding to compression and consistent with the sign convention
adopted for stresses.

In principle, excess pore pressures are generated for any material in response to loading. However,
for coarse grained materials, the dissipation of excess pressures is usually assumed to be sufficiently
rapid for the excess pressures to be neglected at all times. For fine grained materials, on the other
hand, excess pressures will initially be generated in response to loading. These will then gradually
dissipate so that all excess pore pressures again are zero after a sufficiently long time. These two
extreme states are usually referred to as drained and undrained respectively.

3.1 Effective stress principles

Besides the equilibrium, boundary and strain-displacement relations, the complete solution of a
problem of solid mechanics requires a constitutive equation relating the stresses to the strains. For
porous solids, the establishment of such relations are complicated by the fact that the pores may
contain fluids that have a non-negligible effect on the deformations. The most common approach to
establishing constitutive laws for fluid saturated porous media is Terzaghi’s effective stress principle.
This principle states that the appropriate constitutive relations should be established between the
strains and the effective stress, σ′, defined by

σ′ = σ −mpf (3.2)

where σ are the total stresses and m = (1, 1, 1, 0, 0, 0)T. For example, for an linear elastic material,
the relevant constitutive law is given by ε = Cσ′ rather than ε = Cσ. It should be borne in mind
that while Terzaghi’s effective stress principle has proved highly successful as a basis for modeling
many materials of practical interest, there is nothing ‘fundamental’ about it. Indeed, it may be viewed
as part of the constitutive law and for some materials, notably rock, concrete and similar materials,
the effective stress principle proposed by Biot is often more appropriate. An in-depth discussion of
this issue is provided by Coussy (1995).

3.1.1 Undrained compressibility

In general, problems of fluid-saturated porous media involve the determination of the total stresses,
σ, as well as the excess pore pressures, pe . The latter may in many ways be viewed as an additional
stress variable. As such, an additional constitutive relation is required (in addition to the equations
relating the six stress components to the six strain components). Since only volumetric deformations
can arise as a result of changes in pore pressure, the additional constitutive relation must necessarily
be of the type

ṗe = Kws ε̇v = Kwsm
Tε̇ (3.3)

12



PORE PRESSURES AND EFFECTIVE STRESS

where εv = mTε is the volumetric strain and Kws is the effective bulk modulus of the solid/fluid
mixture. This material constant may be estimated in various ways, but can be shown to fall within
the bounds provided by the harmonic and arithmetic between the bulk moduli of the fluid and of the
solid phase material (the grains):(

n

Kw
+

1− n

Ks

)−1

≤ Kws ≤ nKw + (1− n)Ks (3.4)

where Kw and Ks are the bulk moduli of the fluid and solid phases respectively and n is the volume
fraction of the fluid phase (the porosity). Considering that Ks is usually much larger than Kw , we
have

Kw

n
≤ Kws ≤ (1− n)Ks (3.5)

where the lower bound usually is the more accurate one. The point, though, is that Kws for most
materials is sufficiently large for the medium to be considered incompressible, i.e. ε̇v ≈ 0. As an
example, for water at atmospheric conditions, Kw ≈ 2GPa while for quartz, Ks is of order 40GPa.
With a typical porosity of n = 0.5, we have a lower bound of Kws ≈ 4GPa, which is several orders
of magnitude larger than the effective bulk modulus, K , of clays and sands measured under drained
conditions. Consequently, K−1

ws = 0 is often assumed.

3.1.2 Unsaturated conditions

Under partially saturated (unsaturated) conditions, the pore water pressure is in tension correspond-
ing to ps > 0. It is common practice to ignore such pressures when calculating the effective stress.
In other words, the effective stress is defined as:

σ′ = σ −m[min(0, ps) + pe ] (3.6)

In OptumG2, this definition is denoted Terzaghi effective stress. Alternatively, it is possible to use
the definition originally due to Bishop:

σ′ = σ −m[χps + pe ] (3.7)

where χ is a parameter. The basic idea is to specify this parameter such that Terzaghi’s effective
stress is recovered in the limits of a fully saturated and a completely dry material. The choice
χ = S satisfies this requirement and is used in conjunction with the Bishop effective stress. The
switch between Terzaghi (default) and Bishop effective stress can be made under Project/Physical
Parameters.

3.2 Equilibrium equations

The native total stress equilibrium and boundary conditions are given by:

∇Tσ + b = 0 in V

PTσ = text + ts on Sσ

(3.8)

where the total tractions have been split into two parts: one, text, due to externally applied mechan-
ical loading and another, ts , due to steady-state pore pressures (for example those acting on fluid

13



PORE PRESSURES AND EFFECTIVE STRESS

submerged boundaries).

Alternatively, (3.2), the equilibrium and boundary conditions may be expressed in terms of effective
stresses and pore pressures as

∇T(σ′ +mps +mpe) + b = 0 in V

PT(σ′ +mps +mpe) = text + ts on Sσ

(3.9)

3.3 Strain-displacement relations

The strain-displacement relations are unaffected by the presence of a pore fluid and are given by

ε = ∇u (3.10)

as usual.

3.4 Principle of virtual work

The principle of virtual work is given by∫
V

σT∇u dV −
∫
V

bTu dV −
∫
S

(text + ts)
Tu dS = 0 (3.11)

or, alternatively, by∫
V

(σ′ +mps +mpe)
T∇u dV −

∫
V

bTu dV −
∫
S

(text + ts)
Tu dS = 0 (3.12)

where u in both cases satisfies the kinematic boundary conditions.

14



PORE PRESSURES AND EFFECTIVE STRESS

3.5 Summary of governing equations

The full set of governing equations for drained and undrained conditions are summarized in the ta-
bles below. We have here used ε = ∇u and assumed perfect compressibility, K−1

ws = 0.

Drained Undrained

Eff. stress princip. σ′ = σ −mps σ′ = σ −mps −mpe

Equilibrium ∇Tσ + b = 0 in V ∇Tσ + b = 0 in V

Static BC PTσ = text + ts on Sσ PTσ = text + ts on Sσ

Kinematic BC u = ub on Su u = ub on Su

∇u̇ = Cσ̇′ + λ̇∇σG (σ′,κ) ∇u̇ = Cσ̇′ + λ̇∇σG (σ′,κ)

Constitutive κ̇ = λ̇h(σ′,κ) κ̇ = λ̇h(σ′,κ)

F (σ′,κ) ≤ 0, λ̇F (σ′,κ) = 0, λ̇ ≥ 0 F (σ′,κ) ≤ 0, λ̇F (σ′,κ) = 0, λ̇ ≥ 0

Incompressibility – mTε̇ = 0

Table 3.1: Governing equations for quasi-static mechanical problem under drained and undrained
conditions.

Drained Undrained

Equilibrium ∇Tσ′ + [b+∇T(mps)] = 0 in V ∇T(σ′ +mpe) + [b+∇T(mps)] = 0 in V

Static BC PTσ′ = text + [ts − PTmps ] on Sσ PT(σ′ +mpe) = text + [ts − PTmps ] on Sσ

Kinematic BC u = ub on Su u = ub on Su

∇u̇ = Cσ̇′ + λ̇∇σG (σ′,κ) ∇u̇ = Cσ̇′ + λ̇∇σG (σ′,κ)

Constitutive κ̇ = λ̇h(σ′,κ) κ̇ = λ̇h(σ′,κ)

F (σ′,κ) ≤ 0, λ̇F (σ′,κ) = 0, λ̇ ≥ 0 F (σ′,κ) ≤ 0, λ̇F (σ′,κ) = 0, λ̇ ≥ 0

Incompressibility – mTε̇ = 0

Table 3.2: Governing equations for quasi-static mechanical problem under drained and undrained
conditions (effective stresses and excess pressures as primary variables).
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4 PORE PRESSURES: MODELING AND CONSEQUENCES

Most problems in geomechanics involve pore pressures in the form of either seepage pressures or
excess pore pressure, or both. While the governing equations summarized in the previous section
are well established, the actual implementation of these may be undertaken in a number of different
ways. Sometimes a particular choice is motivated solely by convenience while, at other times, it
is motivated more by the actual physics. In the following, some of the more common modeling
approaches are discussed along with some of the consequences associated with the generation of
excess pore pressures.

4.1 Drainage Conditions and Time Scope

In principle, excess pore pressures are generated for any material in response to loading. With time,
these excess pressures will dissipate, i.e. the imbalance created in the total pore pressure distribu-
tion resulting from excess pressure generation will tend to a new equilibrium state following Darcy’s
law. In practice, this equilibrium state is given by the state that existed before the application of the
load, i.e. a state with zero excess pore pressures.

For coarse grained materials, the dissipation of excess pressures is usually assumed to be suffi-
ciently rapid for the excess pressures to be neglected at all times. For fine grained materials, on
the other hand, excess pressures will initially be generated in response to loading. These will then
gradually dissipate so that all excess pore pressures again are zero after a sufficiently long time. The
two different situations are illustrated in Figure 4.1. The coarse grained material never experiences
a significant build-up of excess pore pressure. As such, the conditions are said to be drained at
all times. The fine grained material, on the other hand, experiences significant excess pressures
immediately after the application of the load. These excess pressure remain at close to their initial
value for an appreciable amount of time under which the conditions are said to be undrained. After
a sufficiently long time, the excess pore pressure will have dissipated and the conditions are again
drained.

Load, Excess Pressure

Time

External load

Excess pressure, 

�ne grained material

Excess pressure, 

coarse grained material

Figure 4.1: Response of fluid saturated coarse and fine grained materials to external loading.
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In OptumG2 , the term ‘sufficiently long time’ is quantified by two settings:

• Time Scope: Short Term or Long Term. This is a stage setting and indicates whether the load-
ing and/or changes to the geometry happen instantaneously or over an extended (in principle
infinitely long) period of time. Generally speaking, the structural integrity of geotechnical struc-
tures have to be verified with respect to both scenarios. For example, a foundation must be
stable both when the load is first placed (possibly leading to generation of excess pressures)
and after a long time (when the excess pressure have dissipated).

• Drainage Conditions: Always Drained, Drained/Undrained, Non-Porous. This is a material set-
ting that indicates whether excess pressures are generated or not. For Always Drained ma-
terials, excess pressures are never generated, regardless of the Time Scope. Gravel, sands
and similar coarse grained materials are examples of such materials. For Drained/Undrained
materials, excess pore pressures will be generated for Time Scope = Short Term, but not for
Time Scope = Long Term. Clays and similar fine grained materials follow this pattern of behav-
ior. Finally, for Non-Porous materials, neither seepage nor excess pressures exist (this setting
may be relevant to some types of rock, concrete, etc).

The rules for whether a given point in the domain behaves in a drained or an undrained manner are
summarized in the table below.

Short Term

Long Term

Undrained

Drained

Drained

Drained

Drained

Drained

Drained/Undrained Always Drained Non-Porous

Figure 4.2: Material behavior as function of Drainage and Time Scope.

4.2 Choice of primary variables

Whenever pore pressures are involved, a sharp distinction must be made between total and effective
stresses. Compared to the situation where no pore pressures are present or generated during the
analysis, the equilibrium equations are unaltered and still involve the total stresses and the total
body forces. The static boundary conditions are similarly unaffected although it should be noted that
boundary tractions due to water pressures comprise part of the total tractions (see Section 3.2). The
real difference is that the constitutive relations involve the effective rather than the total stresses.
This situation leads to at least three different possibilities for implementation:
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1. Equilibrium and boundary conditions cast in terms of total stresses, constitutive relations in
terms of effective stresses, and the effective stress principle embedded as a set of constraints.
This is the option shown in Table 3.1.

2. All governing equations cast in terms of effective stresses and excess pore pressures. These
are shown in Table 3.2.

3. All governing equations cast in terms of total stresses and excess pore pressures.

OptumG2 makes use of the second of these options.

4.3 Undrained total stress analysis

In some particular cases, it is possible to conduct the analysis entirely in terms of total stresses.
In particular, for undrained analysis using the Mohr-Coulomb or Drucker-Prager models, it is under
certain circumstances possible to conduct the analysis in terms of total stresses using undrained
material parameters that differ from but are related to the original, drained, parameters.

As an example, consider the linear elastic/perfectly plastic Drucker-Prager model. This model in-
volves Hooke’s law with parameters E and ν and the yield and plastic potential functions:

F = Mp′ + q − k , G = Np′ + q (4.1)

where M , N , and k are the friction coefficient, dilation coefficient, and cohesion respectively and p
and q are the mean and deviatoric stresses respectively (see the Materials Manual for details).

4.3.1 Elasticity

Assuming a finite fluid compressibility, the elastic stress-strain relations are given by

ε̇e = Cσ̇′ = C(σ̇ −mṗe)

mTε̇e = K−1
ws ṗe

(4.2)

where it has further been assumed that the seepage pressures do not change, ṗs = 0. Straightfor-
ward manipulations together with the assumption that K−1

ws ≈ 0 then lead to the following relation
between strains and total stresses:

ε̇e = Cuσ̇ (4.3)

where

Cu = (I− 1
3
mmT)C =

2(1 + ν)

3E


1 − 1

2
− 1

2

−1
2

1 − 1
2

−1
2

− 1
2

1

3

 =
1

3G


1 − 1

2
− 1

2

−1
2

1 − 1
2

−1
2

− 1
2

1

3


In other words, in terms of strain versus total stress, the elastic behaviour is identical to that of a
drained material with a Young’s modulus Eu = 3E/2(1+ν) and Poisson’s ratio νu = 1

2
. Alternatively,

the material may be thought of as having an unaltered shear modulus G and a Poisson’s ratio of
νu = 1

2
. In other words, the modeling may be carried out in terms of effective stresses and excess

pore pressures using (4.2) or in terms of total stresses using (4.3). In both cases, we have

ṗ′ = 1
3
mTσ̇′ = 0 (4.4)

That is, the effective mean stress remains at its initial value throughout.
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4.3.2 Plasticity

Due to the incompressibility of the medium, the change in volumetric strain is zero. Below yield, this
means that the change in elastic volumetric strain is zero while, at yield, the sum of the elastic and
plastic volumetric strains are zero:

mTε̇ = mT(ε̇e + ε̇p) = K−1
ws ṗe + ε̇pv = 0 (4.5)

where ε̇pv is the plastic volumetric strain rate:

ε̇pv = λ̇mT∇G (σ) (4.6)

The change in excess pore pressure is thus given by

ṗe = −Kws ε̇
p
v (4.7)

Bearing in mind that Kws is very large, any small plastic volumetric strain will lead the excess pres-
sure to decrease significantly. For a fixed total mean stress, this implies a decrease in effective mean
stress and thereby effectively an increase in shear strength. In typical elastoplastic calculations, this
means that a limit load will never be attained. The exception is the case where the plastic strain
rate, by virtue of the plastic potential, is zero. In that case, we have ṗe = 0 at yield, and the effective
mean stress remains at its initial value.

For the Drucker-Prager criterion, we can therefore conclude that a dilation parameter of N = 0
should be used for the results to be meaningful. Moreover, since the effective mean stress never
changes from its initial value, the yield function can be written as:

Fu = q − ku (4.8)

where ku = k −Mp′0 is an effective ‘undrained strength’ parameter.

In summary, undrained elastoplastic analyses can be carried out in terms of total stresses using the
following quantities:

Elasticity : Eu =
3E

2(1 + ν)
, νu =

1

2

Plasticity : Fu = Gu = q − ku

(4.9)

4.3.3 Mohr-Coulomb

The same analysis as above can be carried out with respect to the Mohr-Coulomb criterion, resulting
in the following undrained quantities:

Elasticity : Eu =
3E

2(1 + ν)
, νu =

1

2

Plasticity : Fu = Gu = |σ1 − σ3| − 2su

(4.10)

The yield and plastic potentials are here the Tresca function with strength parameter:

su = c cosϕ+ 1
2
σ′
v ,0(1 + K0) sinϕ (4.11)
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where c and ϕ are the Mohr-Coulomb parameters measured under drained conditions, K0 is the ini-
tial earth pressure coefficient, and σ′

v ,0 is the initial effective vertical stress (positive in compression).

The parameter su is referred to as the undrained shear strength. As it appears above, it is a function
of the drained parameters and the initial stress state. However, in practice, one may use the a
distribution of su that is more in line with what is measured in the field. In OptumG2, the Tresca
model may be used for this purpose.
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5 VARIATIONAL PRINCIPLES

Variational principles are at the heart of OptumG2 and all problems are cast – and solved – as such.
The following sections detail the fundamental concepts of variational principle and the specifics of
their use in OptumG2.

5.1 What are variational principles?

A variational principle can be thought of as an optimization problem that offers an alternative way of
stating the governing equations of a physical system. As a simple example, consider Hooke’s law:

F = kx (5.1)

An alternative statement of this governing equation is given by

minimize 1
2
kx2 − Fx (5.2)

The proof of the equivalence between (5.1) and (5.2) follows readily by differentiating 1
2
kx2−Fx with

respect to x and setting the result equal to zero.

A more complex example is the linear elastic truss shown in Figure 5.1.

ub

Figure 5.1: Linear elastic truss.

Using standard finite element terminology, the governing equations can be written as

Ku = f (5.3)

where K is the stiffness matrix and u and f are arrays of nodal displacements and nodal forces
respectively. For the time being, let all displacements be unknown and the nodal force array spec-
ify only the externally applied loads. That is, the system is not yet supported. The above set of
equations may be viewed as a multidimensional generalization of Hooke’s law and an equivalent
optimization – or variational – formulation is given by

minimize 1
2
uTKu− fTu (5.4)

Boundary conditions can now be accounted for simply by imposing appropriate constraints. Consider
first the two supports on the left. The displacements are here zero or, more generally prescribed to
some values which in this case is zero. The above optimization problem should thus be extended to

minimize 1
2
uTKu− fTu

subject to Au = u0

(5.5)
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where the matrix A contains zeros and ones and the vector u0 contains the prescribed displace-
ments (for example zero).

This problem may be solved using the Lagrange multiplier technique. First define the Lagrangian
which is the objective function (the quantity to be optimized) augmented by penalty terms that ensure
satisfaction of the constraint:

L = 1
2
uTKu− fTu− rT(Au− u0) (5.6)

where r is a set of Lagrange multipliers. It may be shown that minimizing the Lagrangian solves
the original optimization problem. In other words, the gradients of L with respect to the variables at
hand, u and r, are required to vanish:

∂L

∂u
= Ku− f − ATr = 0

∂L

∂r
= −Au+ u0 = 0

(5.7)

These equations are known as the optimality conditions associated with the optimization problem
(5.7): solving them solves the optimization problem. Physically, we see that the first set of equations
are the original governing equations now augmented by the term ATr where it is clear that the La-
grange multipliers are the reactions. The second set of equations are simply the kinematic boundary
conditions imposed in the original optimization problem.

A more complex situation is the one suggested by the support at a distance ub from the lower
part of the truss. This support calls for an inequality constraint of the type ui ≥ −ub where ui is the
vertical displacement of the node above the support. More generally, we may extend the optimization
problem with general inequality constraints to arrive at:

minimize 1
2
uTKu− fTu

subject to Au = u0

Bu ≤ ub

(5.8)

Or equivalently, introducing so-called slack variables, s:

minimize 1
2
uTKu− fTu

subject to Au = u0

Bu+ s = ub, s ≥ 0

(5.9)

Again, the Lagrange multiplier method may be used to solve the problem. The Lagrangian is given
by

L = 1
2
uTKu− fTu− rT(Au− u0)− ρT(Bu− ub) (5.10)

where ρ is an additional set of Lagrange multipliers. The optimality conditions are given by

∂L

∂u
= Ku− f − ATr − BTρ = 0

∂L

∂r
= −Au+ u0 = 0

∂L

∂ρ
= −Bu+ ub − s = 0

(5.11)
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where ρ are recognized as the reactions associated with the inequality constraints. In addition, and
crucially, the non-negativity requirement on s imposes the following complementarity conditions:

siρi = 0 , i = 1, ... , n

si ≥ 0 , i = 1, ... , n

ρi ≥ 0 , i = 1, ... , n

(5.12)

where n is the length of the arrays. These conditions have the following physical significance. Sup-
pose that si = 0. The corresponding inequality constraint is then satisfied with equality. In other
words, the distance between the truss and the support is zero. A reaction, i.e. a value of ρi > 0 is
then possible. Conversely, if si > 0, there is still a gap between the truss and the support and ρi = 0.

Comparing the three types of optimization problems considered above – the unconstrained problem
(5.4), the equality constrained problem (5.5) and the inequality constrained problem (5.9) – it is the
latter problem that, due to the nonlinearity of the complementarity conditions, is the most difficult
to solve. Indeed, while the two first can be solved directly, the solution of optimality conditions
associated with (5.9) requires an iterative procedure. In OptumG2, this task is carried out using the
general purpose optimization solver SONIC.
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6 RIGID-PLASTICITY

In analogy with the developments outlined in the previous section, it is possible to obtain optimization
formulations for a broad range of practically relevant problems. The first one considered is that
of structures of rigid-plastic material. For the sake of notational convenience, the effects of pore
pressures are initially neglected. The main results, with the effects of pore pressures included, are
summarized in Section 6.3.

6.1 Governing equations

Rigid-plastic materials undergo no deformations below the point of yield whereas, at the point of
yield, unlimited plastic deformation takes place. As such, the governing equations should be formu-
lated in terms of displacement rates (velocities) and strain rates, rather than total displacements and
strains. Furthermore, we will assume that the deformation up to the point of collapse are sufficiently
small to ignore changes in geometry.

In terms of statics, the governing equations first of all comprise static equilibrium and boundary
conditions:

∇Tσ + b = 0 in V

PTσ = t on Sσ

(6.1)

Secondly, the yield condition must be satisfied:

F (σ) ≤ 0 (6.2)

From a kinematic point of view, the associated flow rule is assumed appropriate:

ε̇p = λ̇
∂F

∂σ
, λ̇ ≥ 0 (6.3)

where ε̇p are the plastic strain rates and λ̇ are plastic multipliers. Using the small deformation
assumption, these should be derived from a velocity field as

ε̇p = ∇u̇ (6.4)

Or, combing the above two equations:

∇u̇ = λ̇
∂F

∂σ
(6.5)

Finally, the complementarity condition should be satisfied:

λ̇F (σ) = 0 (6.6)

meaning that yielding (λ̇ > 0) can only take place if the yield condition is satisfied [F (σ) = 0].

6.1.1 Linearization

For subsequent developments, it is convenient to consider a linearized yield function rather than the
original nonlinear one. In other words, F (σ) ≤ 0 is replaced by a set of linear constraints of the
type:

fT
iσ − ki ≤ 0, i = 1, ... , n (6.7)
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or, in matrix form:
FTσ − k ≤ 0 (6.8)

where F and k collects the contributions, f i and ki respectively, from each linear constraint. Alterna-
tively, introducing slack variables, the yield constraints may be written as

FTσ − k+ s = 0, s ≥ 0 (6.9)

It is self-evident that the original nonlinear yield function can be approximated to within an arbitrary
degree of accuracy by increasing the number of linear planes (although it may not be practically
feasible to do so).

The flow rule associated with the linearized constraints is given in terms of ‘Koiter’s rule’ by

∇u̇ =
n∑

i=1

λ̇i
∂

∂σ
(fT

iσ − ki) =
n∑

i=1

λ̇i f i = Fλ̇, λ̇ ≥ 0 (6.10)

where λ̇ = (λ̇1, ... , λ̇n)
T contains the plastic multipliers associated with each of the linear constraints.

This rule follows as an obvious consequence of von Mises’s principle of maximum plastic dissipation
(see e.g. Hill 1950) and it is difficult to imagine any other way of defining the plastic strain rates for a
composite yield surface.

6.2 Limit analysis

Consider now the following situation. A structure of rigid plastic material is subjected to a set of body
forces b, stemming for example from self weight. On its boundary, a set of tractions, t, act. For such
a scenario, the central question of limit analysis can be posed as: What is the maximum magnitude
of the tractions that can be sustained without the structure suffering collapse. Or alternatively: what
is the minimum magnitude of the tractions that will cause collapse.

6.2.1 Complete solution

Let us introduce a load multiplier α such that the tractions acting on the structure are given by αt
(see Figure 6.1). Suppose further that the structure is at collapse. The displacements are then infi-
nite, so it is necessary to introduce a scaling of the velocities or a relevant work quantity, or similar.

b

αt

V

S

Su

Sσ

t = 0

Sσ

n

Figure 6.1: Solid of volume V with boundary S = Su ∪ Sσ subjected to tractions αt on Sσ and
supported on Su.
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This is equivalent to what is done in many hand calculation upper bound methods where a finite
magnitude of some characteristic displacement defining the collapse mechanism is considered. The
governing equations are then given by:

Equilibrium and static boundary conditions:

∇Tσ + b = 0 in V

PTσ = αt on Sσ

(6.11)

Yield conditions:
FTσ − k+ s = 0 (6.12)

Associated flow rule/strain-displacement compatibility :

∇u̇ = Fλ̇ (6.13)

Scaling: ∫
Sσ

tTu̇ dS = 1 (6.14)

Complementarity conditions:
sTλ̇ = 0, s ≥ 0, λ̇ ≥ 0 (6.15)

where the scaling has been applied with respect to the rate of work done by the reference tractions t.

It may be shown that the solution to the above equations, if it exists, is unique in terms of the
multiplier α. However, there may be more than one stress distribution or velocity field leading to the
same value of the collapse multiplier. The above governing equations may be stated alternatively in
terms of a number of variational principles that in some cases allow for the establishment of bounds
to the exact collapse multiplier α to be determined.

6.2.2 Lower bound principle

One possibility of stating the governing equations is in terms of the lower bound principle:

maximize α

subject to ∇Tσ + b = 0 in V

PTσ = αt on Sσ

FTσ − k+ s = 0, s ≥ 0

(6.16)

In other words, the solution to the above problem satisfies the governing equations (6.11)–(6.15).
The kinematic quantities, which are absent from the above problem, appear as Lagrange multipliers
when solving the problem. This is similar to the situation with the reactions of the truss in Section 5.

The main strength of the lower bound principle is that it allows for a lower bound on the exact collapse
multiplier to be computed, namely by constructing a stress field that satisfies the constraints without
necessarily being optimal.
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6.2.3 Upper bound principle

Secondly, the governing equations may be cast in terms of the following optimization problem:

minimize
∫
V

kTλ̇ dV −
∫
V

bTu̇ dV

subject to ∇u̇ = Fλ̇, λ̇ ≥ 0∫
Sσ

tTu̇ dS = 1

(6.17)

This problem requires consideration of kinematic quantities and provides the possibility to compute
an upper bound to the exact collapse multiplier, namely by postulating a compatible velocity field
that satisfies the flow rule. This is done in such a manner that the rate of work done by the reference
tractions is scaled to unity. The objective function, which comprises the internal rate of work minus
the contribution from the constant body forces, is then the collapse multiplier sought.

6.2.4 Bounds

To verify that the lower and upper bound principles indeed do furnish bounds on the collapse multi-
plier, we may proceed in the following manner. Consider first a stress field, σa, satisfying the yield
condition and the equilibrium and boundary conditions with load multiplier αa. The principle of virtual
work gives ∫

V

σT
aε̇

p dV −
∫
V

bTu̇ dV − αa

∫
Sσ

tTu̇ dS = 0 (6.18)

where u̇ is taken as the exact velocity field and ε̇p = ∇u̇.

Moreover, consider the exact stress field, σ, in conjunction with the exact velocity field:∫
V

σTε̇p dV −
∫
V

bTu̇ dV − α

∫
Sσ

tTu̇ dS = 0 (6.19)

where α is the exact collapse multiplier.

Subtracting (6.18) from (6.19) and using (6.14) gives

α− αa =

∫
V

(σ − σa)
Tε̇p dV =

∫
V

(σ − σa)
TFλ̇ ≥ 0 (6.20)

where the last inequality, which hinges crucially on the associated flow rule, is illustrated in Figure
6.2.

Proceeding to the upper bound principle, consider a velocity field u̇a and a plastic multiplier field
λ̇b ≥ 0, not necessarily related to the velocity field. Furthermore, consider a stress field, σb, not
necessarily in equilibrium, but satisfying the yield conditions FTσb = 0. We may then define a
collapse multiplier by

αab =

∫
V

kλ̇b dV −
∫
V

bTu̇a dV

=

∫
V

(FTσb)
Tλ̇b dV −

∫
V

bTu̇a dV

=

∫
V

σT
bFλ̇b −

∫
V

bTu̇a dV

(6.21)
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.

σ

σ
a

Fλ

≤ 90˚

Figure 6.2: Illustration of lower bound inequality (6.20).

The exact collapse multiplier is defined via the exact stress field:

α =

∫
V

σTε̇pa dV −
∫
V

bTu̇a dV (6.22)

where ε̇pa = ∇u̇a. We thus have:

αab − α =

∫
V

σT
bFλ̇b − σTε̇pa dV (6.23)

Invoking the associated flow rule, Fλ̇b = ε̇pa for the assumed displacement field, leads to:

αab − α =

∫
V

(σb − σ)Tε̇pa dV =

∫
V

(σb − σ)TFλ̇b dV ≥ 0 (6.24)

where the inequality again follows from a simple geometric construction similar to the one shown in
Figure 6.2.

6.2.5 Duality

The two problems (6.16) and (6.17) are in fact dual to each other in the sense that i) they are
constructed on the basis of the same data (∇, b, t, F and k) but involve different sets of variables,
and ii) their solutions in terms of the objective function are identical. This latter point is verified as
follows. Consider a stress field, σa, satisfying the yield condition FTσa + sa = 0, sa ≥ 0 and the
equilibrium and boundary conditions with load multiplier αa. Consider further a velocity field, u̇b,
related to the plastic strain rate and plastic multiplier fields by ε̇b = ∇u̇b = Fλ̇b, λ̇b ≥ 0 and
satisfying

∫
Sσ

tTu̇b dS = 1. We then have:

gap =

∫
V

kTλ̇b dV −
∫
V

bTu̇b dV − αa

=

∫
V

(FTσa + sa)
Tλ̇b dV −

∫
V

bTu̇b dV − αa

=

∫
V

σT
a∇u̇b dV −

∫
V

bTu̇b dV − αa +

∫
V

sT
aλ̇b dV

= αa

∫
Sσ

tTu̇b dS − αa +

∫
V

sT
aλ̇b dV

=

∫
V

sT
aλ̇b dV ≥ 0

(6.25)
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where the duality gap
∫
V
sT
aλ̇b dV vanishes if the complementarity conditions are satisfied.

Besides demonstrating the duality between the two principles, the above manipulations also formally
prove that each of the two principles are equivalent to the full set of governing equations.

6.2.6 Role of associated flow rule

While the assumption of associated flow is essential to the framework of limit analysis, it has rather
different implications for each of the bounding principles. Thus, in order to prove the lower bound
inequality (6.20), it is necessary to assume that the exact solution satisfies the flow rule while no
assumptions are made regarding the approximate solution. Indeed, this latter solution operates only
with static variables whereas no assumptions on the kinematics are made. If the exact solution
does not satisfy the associated flow rule, an equilibrium stress solution is still valid in the sense that
it satisfies all the basic requirements of continuum mechanics. However, the corresponding load
multiplier cannot be guaranteed to be below the collapse multiplier associated with the exact stress
distribution.

In contrast, the upper bound inequality requires that the approximate solution satisfies the flow rule
while no requirements are attached to the exact solution. This means that the inequality is valid even
if the exact solution does not assume an associated flow rule. In other words, an upper bound to a
problem with an associated flow rule will also be an upper bound to the equivalent problem with a
nonassociated flow rule.

In section 9, the role of the flow rule, and its implication for the collapse load, are discussed in more
detail.

6.3 Pore pressures

The effects of seepage and excess pore pressures are readily included into the lower and upper
bound principles, (6.16) and (6.17) respectively.

6.3.1 Drained conditions

Assuming drained conditions, the lower bound principle reads:

maximize α

subject to ∇T(σ′ +mps) + b = 0 in V

PT(σ′ +mps) = αtext + ts on Sσ

FTσ′ − k+ s = 0, s ≥ 0

(6.26)

while the upper bound principle is given by:

minimize
∫
V

kTλ̇ dV −
∫
V

[∇T(mps) + b]Tu̇ dV +

∫
S

tT
s u̇ dS

subject to ∇u̇ = Fλ̇, λ̇ ≥ 0∫
Sσ

tT
extu̇ dS = 1

(6.27)
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In the above it is assumed that only the external load, text, is amplified to attain a state of collapse
while the part of the tractions due to seepage pressures, ts , remains constant.

6.3.2 Undrained conditions

Assuming undrained conditions, the lower bound principle reads:

maximize α

subject to ∇T(σ′ +mps +mpe) + b = 0 in V

PT(σ′ +mps +mpe) = αtext + ts on Sσ

FTσ′ − k+ s = 0, s ≥ 0

(6.28)

while the upper bound principle is given by:

minimize
∫
V

kTλ̇ dV −
∫
V

[∇T(mps) + b]Tu̇ dV +

∫
S

tT
s u̇ dS

subject to ∇u̇ = Fλ̇, λ̇ ≥ 0

mT∇u̇ = 0∫
Sσ

tT
extu̇ dS = 1

(6.29)

Again, it is assumed that only the external load, text, is amplified to attain a state of collapse while
the part of the tractions due to seepage pressures, ts , remains constant.

6.4 Gravity multiplier limit analysis

In some cases, it is useful to attain a state of collapse by amplifying gravity while keeping all external
tractions constant. The resulting collapse multiplier may in some applications, e.g. slope stability,
be interpreted as the factor of safety. The above principles are easily modified to account for this
scenario, with the relevant lower bound principle being:

maximize α

subject to ∇T(σ′ + αmps +mpe) + αb = 0 in V

PT(σ′ + αmps +mpe) = text + αts on Sσ

FTσ′ − k+ s = 0, s ≥ 0

(6.30)

We here note that both the body forces, b, as well as the seepage pressures, ps , and the tractions
due to seepage pressures, ts , are amplified proportionally consistent with the scenario that gravity
is amplified to attain a state of collapse.

6.5 Mixed principles

The key feature of the upper and lower bound theorems is that they facilitate the computation of
rigorous bounds. A number of other principles, which again reproduce the governing equations, are
possible. Rather than facilitate the computation of rigorous bounds, the key advantage of these prin-
ciples is that they suggest various ‘compromise’ solutions, i.e. solutions that cannot be rigorously
bounded but which tend to be closer to the exact solution than either of the rigorous upper and lower
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bound solutions. These principles are generally referred to as mixed principles and typically involve
both the stress and the displacements as primary variables.

A commonly used mixed principle (see e.g. Zouain et al. 1993) is the following:

min
u̇

max
σ,α,s

α +

∫
V

(σ′ +mps +mpe)
T∇u̇ dV −

∫
V

bTu̇ dV −
∫
S

(αtext + ts)
Tu̇ dS

subject to FTσ′ − k+ s = 0, s ≥ 0
(6.31)

where both the velocities and the stresses appear as variables. This principle is particularly suitable
as a starting point for mixed stress-displacement finite element formulations and has been used ex-
tensively for that purpose (Borges et al. 1996; Krabbenhoft et al. 2007a,b; Zouain et al. 1993).

The gravity multiplier version of the principle is given by:

min
u̇

max
σ,α,s

α +

∫
V

(σ′ + αmps +mpe)
T∇u̇ dV − α

∫
V

bTu̇ dV −
∫
S

(text + αts)
Tu̇ dS

subject to FTσ′ − k+ s = 0, s ≥ 0

(6.32)
where both body forces and seepage pressures again are amplified.
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7 ELASTICITY

Variational principles for boundary value problems of linear and nonlinear elasticity have long been
available and have often been used as a basis for the construction of finite element approximations.
In the following, a number of such principles are presented.

7.1 Governing equations

The governing equations comprise:

Equilibrium and static boundary conditions:

∇Tσ + b = 0 in V

PTσ = t on Sσ

(7.1)

Strain-displacement compatibility :
∇u = εe (7.2)

Constitutive law :
εe = ∇ψ(σ), σ = ∇ϕ(εe) (7.3)

where ∇ψ and ∇ϕ are the Helmholtz free and complementary energy functions respectively. These
functions are assumed convex and are related by

σTεe = ψ(σ) + ϕ(εe) (7.4)

For linear elasticity we thus have ψ(σ) = 1
2
σTCσ and ϕ(εe) = 1

2
εe TDεe , where C and D are the

elastic compliance and stiffness moduli respectively. Moreover, with C = D−1 we have

ψ(σ) = ϕ(εe) = 1
2
σTεe (7.5)

7.2 Complementary energy principle

The governing equations (7.1)–(7.3) can be shown to be reproduced by the following optimization
problem:

maximize −
∫
V

ψ(σ) dV

subject to ∇Tσ + b = 0 in V

PTσ = t on Sσ

(7.6)

This principle, which is known as the total complementary energy principle, can be viewed as the
elastic analogue to the lower bound principle (6.16). Even though it operates only with stresses,
the displacements are recovered in the process of solving the problem, namely as the Lagrange
multipliers associated with the equilibrium constraints.

7.3 Potential energy principle

Alternatively, the governing equations may be cast in terms of the total potential energy principle:

minimize
∫
V

ϕ(εe) dV −
∫
V

bTu dV −
∫
Sσ

tTu dS

subject to ∇u = εe
(7.7)
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Figure 7.1: Convex function.

This form bears some resemblance to the upper bound principle (6.17). It is the form most commonly
used as a basis for the finite element method.

7.4 Hellinger-Reissner principle

Finally, the Hellinger-Reissner principle is often useful for constructing non-standard finite element
formulations. This principle is given by

min
u

max
σ

∫
V

σT∇u dV −
∫
V

1
2
σTCσ dV −

∫
V

bTu dV −
∫
Sσ

tTu dS (7.8)

In other words, the governing equations are reproduced by minimizing the objective function with
respect to the displacements and maximizing it with respect to the stresses.

7.5 Bounds

The principles (7.6) and (7.7) provide bounds on the energy of the system. This property may be
used to either calculate upper and lower bounds on properties of interest or as a means of gauging
the proximity of approximate solutions to the exact solution.

Before proceeding, recall that a convex function f (x) is one where the function lies above all of its
tangents:

∇f (xA)
T(xB − xA) ≤ f (xB)− f (xA) (7.9)

for all xA and xB (see Figure 7.1).

Considering (7.6), any admissible, though not necessarily optimal, stress distribution σa satisfies the
principle of virtual work: ∫

V

σT
aε

e dV −
∫
V

bTu dV −
∫
Sσ

tTu dS = 0 (7.10)
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where u is the exact displacement field and εe = ∇u. Similarly, the exact stress distribution, σ,
satisfies: ∫

V

σTεe dV −
∫
V

bTu dV −
∫
Sσ

tTu dS = 0 (7.11)

Subtracting (7.11) from (7.10) and using (7.3) and (7.9) gives

0 =

∫
V

εe T(σa − σ) dV =

∫
V

∇ψ(σ)T(σa − σ) dV ≤
∫
V

ψ(σa) dV −
∫
V

ψ(σ) dV (7.12)

or:

−
∫
V

ψ(σa) dV ≤ −
∫
V

ψ(σ) dV (7.13)

thus demonstrating the lower bound nature of (7.6). Generally speaking, we may say that since the
internal energy is over-estimated, so is the external energy and for fixed loads, the displacements
implied by the principle of virtual work are larger than the exact displacements.

Proceeding to (7.7), we consider the principle of virtual work for an admissible displacement field in
conjunction with the exact stresses:∫

V

σTεea dV −
∫
V

bTua dV −
∫
Sσ

tTua dS = 0 (7.14)

and the exact displacements in conjunction with the exact stresses:∫
V

σTεe dV −
∫
V

bTu dV −
∫
Sσ

tTu dS = 0 (7.15)

Subtracting (7.15) from (7.14) and using (7.3) gives∫
V

bT(ua − u) dV +

∫
V

tT(ua − u) dS =

∫
V

σT(εea − εe) dV =

∫
V

∇ϕ(εe)T(εea − εe) dV (7.16)

Using (7.9), we have

ϕ(εea)−
∫
V

bTua dV −
∫
V

tTua dS ≥ ϕ(εe)−
∫
V

bTu dV −
∫
V

tTu dS (7.17)

which verifies the upper bound nature of (7.7). This inequality implies that approximate solutions
generally speaking will be ‘too stiff’ in the sense that the displacements, for a given set of external
forces, are underestimated. This is a well known property of the standard displacement finite element
method based on the principle of minimum potential energy.

7.6 Duality

Finally, we show that the problems (7.6) and (7.7) are dual to each other in the sense they are
constructed on the basis of the same data and have the same solution. We consider two admissible,
but not necessarily related, fields ua and σb. Subtracting the objective function of (7.6) from that of
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(7.7) gives

gap =

∫
V

ϕ(εea) dV −
∫
V

bTua dV −
∫
Sσ

tTua dS −
(
−
∫
V

ψ(σb) dV
)

=

∫
V

ϕ(εea) dV +

∫
V

σT
bε

e
a dV −

∫
V

bTua dV −
∫
Sσ

tTua dS +

∫
V

ψ(σb) dV −
∫
V

σT
bε

e
a dV

=

∫
V

ϕ(εea) dV +

∫
V

ψ(σb) dV −
∫
V

σT
bε

e
a dV ≥ 0

where the final inequality follows from the results of the previous section. We see that the gap
vanishes when both the displacements and the stresses are the exact fields.
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8 ELASTOPLASTICITY

In the following, a general thermomechanical formulation of elastoplasticity is first considered after
which a number of useful variational principles are derived and discussed. For the sake of notational
convenience, the effects of pore pressures are initially neglected. The main results, with the effects
of pore pressures included, are summarized in Section 8.3.

8.1 Thermomechanical formulation of elastoplasticity

In this section a thermomechanical formulation of elastoplasticity is briefly summarized following pri-
marily the exposition of Simo (1998) and Krabbenhoft (2009).

From the first and second laws of thermodynamics and assuming isothermal conditions, the following
central identity can be derived (Collins and Houlsby 1997):

P = σTε̇ = ϕ̇+D (8.1)

where P is the rate of internal work, ϕ is the Helmholtz free energy function and D ≥ 0 is the
dissipation function. Following Simo (1998) we will assume that the Helmholtz free energy is a
function of the elastic strains, εe , and a set of strain-like hardening variables, η:

ϕ = ϕ(εe ,η) (8.2)

The time derivative of ϕ is given by

ϕ̇ = ∇εeϕ(ε
e ,η)ε̇e +∇αϕ(ε

e ,η)η̇ (8.3)

By comparison with (8.1) for a purely elastic process (η̇ = 0, D = 0), it can be verified that the
stresses are given by

σ = ∇εeϕ(ε
e ,η) (8.4)

The set of variables conjugate to η are referred to as stress-like hardening variables and are denoted
by κ:

κ = ∇αϕ(ε
e ,η) (8.5)

Next, the complementary Helmholtz free energy function, ψ(σ,κ), is defined via the Legendre trans-
formation:

ψ(σ,κ) = −ϕ(εe ,η) + σTεe + κTη (8.6)

from which it follows that the elastic strains and the strain-like hardening variables can be expressed
as

εe = ∇σψ(σ,κ), η = ∇κψ(σ,κ) (8.7)

From straightforward manipulations of the above relations the dissipation follows as

D = σTε̇− ϕ̇(εe ,η)

= σT(ε̇− ε̇e)− κTη̇
(8.8)

which is a well-known result [except that a change of sign of κ is often made (Collins and Houlsby
1997; Simo 1998)]. Furthermore, the rate of internal work may be expressed in the following form:

P(σ,κ, εe ,η) = ϕ̇(εe ,η) +D
= d

dt [−ψ(σ,κ) + σTεe + κTη] + [σT(ε̇− ε̇e)− κTη̇]

= σTε̇− ψ̇(σ,κ) + σ̇Tεe + κ̇Tη

(8.9)
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Following Krabbenhoft (2009), we seek to derive constitutive models by maximizing the internal work
rate subject to yield conditions:

maximize
σ,κ

P(σ,κ; εe ,η)

subject to F (σ,κ) ≤ 0
(8.10)

From the expression (8.9) of the internal work rate, we can conclude that

sup
σ,κ

{P(σ,κ; εe ,η)} = sup
σ,κ

{σTε̇− ψ̇(σ,κ) + σ̇Tεe + κ̇Tη}

= sup
σ,κ

{σTε̇− ψ̇(σ,κ)}+ σ̇Tεe + κ̇Tη
(8.11)

The relevant maximization principle thus reduces to

maximize
σ,κ

σTε̇− ψ̇(σ,κ)

subject to F (σ,κ) ≤ 0
(8.12)

The procedure is now to postulate a relevant potential ψ(σ,κ) after which the constitutive equations
follow as the first-order optimality conditions associated with the above maximization problem. In
this connection, we note that von Mises’ principle of maximum plastic dissipation (see e.g. Lubliner
1990) appears for the particular choice of ψ = 0.

In order to derive more general constitutive equations, the time derivative of ψ is first expanded as

ψ̇(σ,κ) = ∇σψ(σ,κ)σ̇ +∇κψ(σ,κ)κ̇ (8.13)

Using this expansion, the constitutive equations associated with (8.12) follow as:

ε̇ = ∇2
σσψ(σ,κ)σ̇ +∇2

κσψ(σ,κ)κ̇+ λ̇∇σF (σ,κ)

0 = ∇2
σκψ(σ,κ)σ̇ +∇2

κκψ(σ,κ)κ̇+ λ̇∇κF (σ,κ)

F (σ,κ) ≤ 0, λ̇F (σ,κ) = 0, λ̇ ≥ 0

(8.14)

It is convenient to introduce the effective moduli:

C = ∇2
σσψ(σ,κ)−∇2

κσψ(σ,κ)[∇2
κκψ(σ,κ)]

−1∇2
σκψ(σ,κ)

S = −[∇2
κκψ(σ,κ)]

−1∇2
σκψ(σ,κ)

h = −[∇2
κκψ(σ,κ)]

−1∇κF (σ,κ)

(8.15)

so that the constitutive equations can then be expressed in the following format:

ε̇ = Cσ̇ + λ̇ [∇σF (σ,κ) + ST∇κF (σ,κ)]

κ̇ = Sσ̇ + λ̇h

F (σ,κ) ≤ 0, λ̇F (σ,κ) = 0, λ̇ ≥ 0

(8.16)

The moduli C and h here have the same physical significance as in an conventional elastoplastic
model of the kind summarized in Section 2: C is an elastic compliance modulus and h is an array
of hardening functions. In addition, the governing equations include a new constitutive modulus, S,
referred to as a coupling modulus. This additional modulus is useful in the construction of constitutive
models for soils and other granular materials (Krabbenhoft 2009).

37



ELASTOPLASTICITY

8.1.1 Finite-step formulation

A finite-step version of the incremental variational formulation discussed above is considered.
The power of deformation may be approximated in time as

P = ϕ̇+D ≈ ϕ− ϕ0 +D (8.17)

where subscript 0 refers to an initial, known, state. Using the relations of the previous section
together with a fully implicit evaluation of the dissipation, the finite-step power of deformation may
be expressed in terms of σ and κ as

P(σ,κ) = σT∆ε− P̂(σ,κ) (8.18)

where
P̂(σ,κ) = (ψ − ψ0)−∆σT∇σψ0 −∆κT∇κψ0 (8.19)

The finite-step version of the material point principle (8.10) thus reads:

maximize
σ,κ

σT∆ε− P̂(σ,κ)

subject to F (σ,κ) ≤ 0
(8.20)

where ∆ε is assumed known.

8.2 Variational principles

Following the treatment of rigid-plasticity, a number of similar variational principles may be derived.

8.2.1 Hellinger-Reissner principle

The most straightforward variational principle appears by extending the local material-point principle
(8.20) to the entire domain. The resulting principle reads:

min
∆u

max
α,σ

α +

∫
V

σT∇∆u dV −
∫
V

P̂(σ,κ) dV −
∫
V

bT∆u dV − α

∫
Sσ

tT∆u dS

subject to F (σ,κ) ≤ 0

(8.21)

For linear elasticity, this principle reduces to the well-known Hellinger-Reissner principle.

8.2.2 Lower bound principle

An equivalent statement of the governing equations is the lower bound principle:

maximize α−
∫
V

P̂(σ,κ) dV

subject to ∇Tσ + b = 0 in V

PTσ = αt on Sσ

F (σ) ≤ 0

(8.22)
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where we note that the rigid-plastic lower bound principle (6.16) appears for P̂ = 0.

As a special case, consider a linear elastic-perfectly plastic material with linear (or linearized yield
functions). Further assume that the elastic modulus is time-independent (C0 = C). We then have:

P̂ = 1
2
∆σTC∆σ, (8.23)

where ∆σ = (σ − σ0), and thereby:

maximize α− 1
2

∫
V

∆σTC∆σ dV

subject to ∇Tσ + b = 0 in V

PTσ = αt on Sσ

FTσ − k+ s = 0, s ≥ 0

(8.24)

where s again are slack variables. The similarity of this principle to the rigid-plastic principle (6.16)
is apparent. Indeed for C = 0 (rigid elastic behaviour) the latter principle is recovered exactly.

8.2.3 Upper bound principle

Finally, a dual, upper bound version of (8.22), may be derived. In the general case, the result is
not particularly transparent and involves quantities that do not follow immediately from the main
quantities introduced so far (the potential ψ and the yield function F ). Instead, consider the special
case (8.24). The dual to this principle is given by:

minimize
∫
V

kT∆λ dV −
∫
V

bT∆u dV +

∫
V

1
2
εe TDεe dV

subject to ∇∆u = ∆εe + F∆λ, ∆λ ≥ 0∫
Sσ

tT∆u dS = 1

(8.25)

where εe are to be interpreted as the elastic strains, u are the displacements, and λ are plastic
multipliers. The similarity to the rigid-plastic upper bound principle (6.17) is again apparent. Indeed,
for D = ∞ (rigid elastic behaviour), the minimization nature of the problem will imply εe = 0.

8.3 Pore pressures

The effects of seepage and excess pore pressures are readily included into the principles derived
above.

8.3.1 Drained conditions

Assuming drained conditions, the lower bound principle (8.22) extends to:

maximize α−
∫
V

P̂(σ′,κ) dV

subject to ∇T(σ′ +mps) + b = 0 in V

PT(σ′ +mps) = αtext + ts on Sσ

F (σ′) ≤ 0

(8.26)
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while the modified Hellinger-Reissner principle reads:

min
∆u

max
σ,α

α +

∫
V

σ′T∇∆u dV −
∫
V

P̂(σ′,κ) dV

−
∫
V

[∇T(mps) + b]T∆u dV −
∫
Sσ

(αtT
ext + ts)∆u dS

subject to F (σ′,κ) ≤ 0

In the above it is assumed that only the external load, text, is amplified to attain a state of collapse
while the part of the tractions due to seepage pressures, ts , remains constant.

8.3.2 Undrained conditions

Assuming drained conditions, the lower bound principle is given by:

maximize α−
∫
V

P̂(σ′,κ) dV

subject to ∇T(σ′ +mps +mpe) + b = 0 in V

PT(σ′ +mps +mpe) = αtext + ts on Sσ

F (σ′) ≤ 0

(8.27)

while the modified Hellinger-Reissner principle reads:

min
∆u

max
σ,α,pe

α +

∫
V

(σ′ +mpe)
T∇∆u dV −

∫
V

P̂(σ′,κ) dV

−
∫
V

[∇T(mps) + b]T∆u dV −
∫
Sσ

(αtT
ext + ts)∆u dS

subject to F (σ′,κ) ≤ 0

(8.28)

Again, it is assumed that only the external load, text, is amplified to attain a state of collapse while the
part of the tractions due to seepage pressures, ts , remains constant. We note that the excess pres-
sure, pe , enters the lower bound principle as an additional variable while the upper bound principle
includes an additional constraint ensuring incompressibility.
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9 NONASSOCIATED FLOW RULES

The variational principles derived in the preceding sections all rely crucially on the concept of asso-
ciated flow. For some materials, notably metals, this assumption is in reasonable agreement with
experiments and the principles are thus directly applicable. For frictional materials, on the other
hand, the assumption of associated flow is usually in contradiction to experiments. Indeed, the di-
lation implied by the flow rule associated with the Mohr-Coulomb, Drucker-Prager or other relevant
failure criteria is usually far greater than actually observed in experiments. A nonassociated flow rule
is therefore often used, usually by specifying a flow potential G of the same functional form as the
yield potential F .

Using a nonassociated flow rule, it is possible to model the real behaviour of soils fairly well, even
with a linear elastic/perfectly plastic model. The situation is outlined schematically in Figure 9.1.
For loose sands and normally consolidated clays, the response in typical drained triaxial or biaxial
test is such that the shear stress increases monotonically up to some ultimate limit state. During
this process, the soil will undergo a compaction, the rate of which will eventually tend to zero. With
the Mohr-Coulomb model implemented in OptumG2, it is possible to account both for the initial ap-
proximately linear stress-strain response and for the ultimate strength. In the intermediate range,
the response of the Mohr-Coulomb model tends to be somewhat too stiff due to the assumption of
perfect, i.e. non-hardening, plasticity. These characteristics are independent of whether an associ-
ated or a nonassociated flow rule are used. However, the deformations – here shown in terms of
volumetric strain versus shear strain – are highly dependent on the flow rule. Indeed, for the present
example, the associated flow rule predicts a dilation that is far too large. The nonassociated flow
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Figure 9.1: Soil behaviour and capabilities of associated and nonassociated Mohr-Coulomb models.
Note: the nonassociated response assumes that no localization takes place.
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rule, on the other hand, specifies the amount of dilation directly and it is thus possible to account for
the deformations quite accurately.

For dense sands and overconsolidated clays the situation is, qualitatively, much the same. The
stress-strain response is independent of the flow rule while the associated flow rule over-predicts
the amount of dilation significantly. We also note the appearance of a peak followed by a softening
in the stress-strain response. This coincides with a tendency for the dilation to decrease, eventually
reaching a value of zero.

On the basis of these observations, it would be tempting to conclude that the yield function and
the flow rule can be adjusted independently – the former to match an observed strength the latter
to match an observed deformation behaviour. While there is some truth to this, it is unfortunately
somewhat naive. In fact, the introduction of a nonassociated flow rule gives rise to a number of
phenomena that do not reveal themselves from the kind of simple observations made above. This is
discussed in the following section.

9.1 Consequences of nonassociated flow

The question of how the response of plastic or elastoplastic boundary value problems are affected
by the flow rule is an old one that still in many ways has not been resolved. Since the effect of the
flow rule on the deformations is quite obvious, at least qualitatively, the focus has mostly been on
how the flow rule affects the limit load. On the basis of the kind of behaviour illustrated in Figure
9.1, it could be concluded that there is no effect at all: the ultimate limit load is independent of the
flow rule. This view is still upheld in some circles. A slight moderation of it is that the flow rule
only affects problems with a ‘high degree of kinematic constraint’. However, exactly how the ‘degree
of kinematic constraint’ is quantified has never been elucidated other than occasional statements
that it for most soil mechanics problems is ‘low’. Such statements are only rarely backed up by
quantitative results, for example in the form of finite element analyses for problems with different
friction and dilation angles. And if they are, the problem and/or the set of material parameters chosen
are usually of little practical significance. On the other hand, where more rigorous and practically
relevant numerical analyses have been undertaken, the conclusion has inevitably been that the flow
rule has a rather significant effect on the ultimate limit load. For example Erickson and Drescher
(2002), Loukidis and Salgado (2009) and Krabbenhoft et al. (2012) report reductions in bearing
capacity of up 45% for strip and circular footings on sand. Such reductions in bearing capacity find
abundant theoretical support as do a number of other perhaps unexpected phenomena that are
observed in typical numerical analyses. Some of these are discussed below.

9.1.1 Consequence 1: Localization and non-uniqueness of limit load

An implicit assumption usually made when solving elastoplastic boundary value problems is that the
response, or at least the limit load, is unique. This assumption does indeed hold when the flow rule is
associated as was shown in Sections 6 and 8 for rigid-plastic and elastoplastic materials respectively.
However, when the flow rule is nonassociated, the response will generally be non-unique. In other
words, there may be multiple solutions all satisfying the governing equations, but each implying a
different limit load. This fact and the tools with which to analyze constitutive models with respect to
uniqueness have long been established (Rice 1976), but have found relatively little resonance in the
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Figure 9.2: Response of biaxial test prone to localization.

geomechanics community.

The type of non-uniqueness experienced for nonassociated materials is intimately tied to the appear-
ance of shear bands, i.e. localized bands of intense deformation that tend to form rather abruptly
and usually lead to an apparent softening in the load-displacement curve. The phenomenon can be
illustrated as follows. Consider a biaxial test as shown in Figure 9.2. The test is modeled by means
of a constitutive model that makes use of a nonassociated flow rule. Initially, the response will be
homogeneous, i.e. the stress and strain states are constant throughout the sample. Then at some
point, a bifurcation is possible. This means that the response may continue along a path where
the deformation remains homogeneous or the response may change fundamentally by the sample
developing a shear band. This change of deformation mode will lead to a drop in the axial force that
can be sustained as the loading is continued. As such the response is non-unique: there are two
solutions, a homogeneous and a localized, that both satisfy all of the governing equations.
Furthermore, suppose that the sample had remained homogeneous beyond the first bifurcation
point. This does not prevent bifurcation from taking place at some other point during the loading.
And the geometry of the localized solution (here given by the shear band inclination) need not be
the same as for the first bifurcation point. In fact, if the sample remains homogenous beyond the first
bifurcation point, there will usually be a range of possible localized solutions.

It may be shown that a suitable measure of the tendency for a constitutive model to lead to localiza-
tion can be gauged by the eigenvalues of the acoustic tensor defined by

A(σ,n) = PT(n)Dep(σ)P(n) (9.1)

where Dep is the elastoplastic constitutive modulus and P is the usual projection matrix (1.8) with the
normal n being the normal to the shear band (see Figure 9.2). Thus, for a given stress state, σ, and
an assumed shear band orientation, n, localization is possible if the determinant of A is less than
or equal to zero. If not, the sample is stable and the response will continue along the homogenous
path. This and similar results are discussed in detail by Bigoni (2000); Bigoni and Hueckel (1991);
Leroy and Ortiz (1989); Rice (1976); Runesson et al. (1992) among others.
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9.1.2 Consequence 2: Reduction in limit load

The second consequence of nonassociated flow is that the limit load usually observed in numerical
experiments is significantly lower than the corresponding limit load obtained under the assumption of
associated flow. Generally speaking and with reference to the Mohr-Coulomb model, the reduction
in limit load depends on the difference between the friction and dilation angles and on the mag-
nitude of these angles. Thus, the reduction in limit load increases as the difference between the
friction and dilation angles increases. And for a fixed difference, the reduction usually increases
with increasing absolute magnitude of the friction and dilation angles. In other words, the param-
eter set (ϕ,ψ) = (40◦, 10◦) usually leads to a greater reduction in bearing capacity that the set
(ϕ,ψ) = (30◦, 0◦).

The causes of this reduction are two-fold. Firstly, the tendency of nonassociated flow rules to in-
duce localization will in far most cases mean that the ultimate limit state will be governed by highly
localized states of stress and strain. Secondly, the flow rule imposes certain constraints on the kine-
matics of the shear bands that in the nonassociated cases leads to a reduction in bearing capacity.

The second effect can be illustrated by the simple example shown in Figure 9.3. We here consider
a rigid block on a rigid frictional surface. The block is subjected to a constant normal force P and
the objective is to determine the maximum tangential force, Q, that can be sustained. Regarding the
exact geometry of the problem, we imagine an arbitrarily thin interface between the block and the
surface in which the relevant yield condition is that of Coulomb:

F =
√

(σx − σy )2 + 4τ 2xy + (σx + σy ) sinϕ (9.2)

where ϕ is the friction angle.

The flow potential, on the other hand, is given by

G =
√

(σx − σy )2 + 4τ 2xy (9.3)

That is, a non-dilative behaviour is assumed.

δ

L

P

Q

σx

σy

τxy

Figure 9.3: Rigid block on a rigid frictional surface.
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The plastic strain rates are thus given by ε̇px
ε̇py
γ̇px

 = λ̇
1

G

 σx − σy

σy − σx

4τxy

 (9.4)

Furthermore, the strain-displacement relations give
ε̇px

ε̇py

γ̇px

 =


∂u̇x
∂x
∂u̇y
∂y

∂u̇x
∂y

+
∂u̇y
∂x

 ≈


Ju̇xK
LJu̇yK
δJu̇xK

δ
+

Ju̇yK
L

 (9.5)

where Ju̇yK is the velocity jump across the interface, i.e. the difference in u̇y between the upper and
lower parts of the discontinuity. Similarly, Ju̇xK is the velocity jump along the interface, i.e. the dif-
ference in u̇x between the two ends of the interface. Letting δ → 0 and requiring a finite magnitude
of the largest strain rate, we find that ε̇x = 0. In other words, the infinitely thin interface does not
stretch longitudinally.

Returning to the flow rule, this imposes the constraint that

σx = σy (9.6)

Substituting this constraint into the yield condition gives:

F = 2|τxy |+ 2σy sinϕ = 0 (9.7)

from which we arrive at the solution:
Q = P sinϕ (9.8)

rather than the standard solution of P = Q tanϕ which indeed is the solution assuming associated
flow, G = F .

Introducing an ‘effective’ friction angle ϕ∗ by tanϕ∗ = sinϕ, we may write the solution as

Q = P tanϕ∗ (9.9)

For ϕ = 40◦ we thus have tanϕ/ tanϕ∗ = 1.3 which is similar to the ratio between the characteristic
and design friction angles specified by many codes of practice, for example Eurocode 7. As such,
the effect of nonassociated flow can hardly be ignored, even for the least ‘kinematically constrained’
of problems.

The procedure described above can be generalized to arbitrary three-dimensional solids undergoing
localized deformation (Krabbenhoft et al. 2012, 2004, 2010). The result is that the effective strength
domain is defined by a function identical to the original yield function but involves reduced material
parameters, the magnitude of which depends on the friction and dilation angles. For the Mohr-
Coulomb criterion we thus have an effective strength domain given by

F ∗ = |σ1 − σ3|+ (σ1 + σ3) sinϕ
∗ − 2c∗ cosϕ∗ (9.10)
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Figure 9.4: Effect of nonassociativity according to (9.11): in terms of friction angles (left) and in
terms of friction coefficients (right).

where the effective strength parameters are given by

tanϕ∗ = ω tanϕ

c∗ = ωc

ω =
cosϕ cosψ

1− sinϕ sinψ

(9.11)

These relations were first derived by Hill (1950) for the special case of ψ = 0 and by Davis (1968)
for the general case. The influence of the degree of nonassociativity on the effective Mohr-Coulomb
friction angle assuming different dependencies between the friction and dilation angles is shown in
Figure 9.4.

Similarly, for the Drucker-Prager criterion the effective strength domain is given by (Krabbenhoft et al.
2012):

F ∗ = 1
3
M∗(σ1 + σ2 + σ3) +

√
1
2
(σ1 − σ2)

2 + 1
2
(σ2 − σ3)

2 + 1
2
(σ3 − σ1)

2 − k∗ (9.12)

where
M∗ = ωM

k∗ = ωk

ω =

√
9− 4N2

9 + 4M2 − 8MN

(9.13)

9.1.3 Consequence 3: ‘Numerical problems’

In finite element analyses of for example a biaxial test, one will often observe that some kind of
imperfection is necessary to induce localization. This may come in the form of a slight material inho-
mogeneity or a slight imperfection in the geometry or boundary conditions. Furthermore, it is often
observed that the response tends to be rather dependent on the finite element mesh. In particular,
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Figure 9.5: Load-displacement response for strip footing on a weightless soil with ϕ = 40◦ and
ψ = 10◦ [after Krabbenhoft et al. (2012)].

if regular meshes are used, there is a tendency for the localization to take place along the edges of
the mesh. In view of the non-uniqueness of the orientation of the localization bands – and thereby
the overall force-displacement response – this is to be expected.

Secondly, and more seriously, it has frequently been reported that numerical solutions to boundary
value problems involving nonassociated constitutive models are much more difficult to obtain than
in the case where the flow rule is associated (Carter et al. 2005; Clausen and Krabbenhoft 2008;
Loukidis and Salgado 2009; Manzari and Nour 2000). These complications have a tendency to be
more pronounced for high (but realistic) values of the friction angle and the degree of nonassociativ-
ity. Similarly, for fixed material parameters, one usually observes a degradation of the performance
as the number of finite elements in the model is increased.

While often reported as ‘numerical problems’, these characteristics are not entirely unexpected.
Since there may be a range of possible solutions, each associated with a different pattern of lo-
calization and all of which are entirely valid, it can be expected that any numerical solution will be
very sensitive to both physical imperfections as well as round-off errors and the exact sequence
in which the procedures defining the solution scheme are carried out. In the end, the result is a
load-displacement response that tends to be rather oscillatory. An example is shown in Figure 9.5
which is concerned with the analysis of a strip footing on a cohesive-frictional and weightless soil
(the so-called Nc problem). Compared to the response of the corresponding associated problem
we note several characteristics: i) the stiffness of the associated problem is somewhat higher, ex-
cept in the very initial stages where the response is purely elastic, ii) nonassociativity leads to a
significant decrease in ultimate strength (in this case by almost 40%), and iii) the load-displacement
response beyond a certain level of displacement is somewhat oscillatory for the nonassociated prob-
lem. These oscillations are a consequence of the non-uniqueness of the boundary value problem
and correspond physically to a switching between different modes of failure beyond the point at which
the load carrying capacity of the structure first becomes exhausted. This is illustrated in Figure 9.6
where it is seen that the failure modes change quite significantly between different load steps beyond
the point at which the limit load apparently is reached (in this case, at a displacement of u ≃ 0.05).
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Under such conditions, standard Newton-Raphson based procedures are likely to fail. Indeed, the
critical assumption behind such procedures is that a good estimate of the solution is available. Since
the only real possibility for estimating the unknown solution is by the last converged solution and
since the mode of stress and deformation may change very significantly and abruptly from one step
to the next, convergence is not likely. This feature and the oscillations in the load-displacement
curve are often grouped together and labeled ‘numerical problems’. However, whereas the former
definitely is due to a shortcoming of the method of solution, the latter is a consequence of the
constitutive model and is to be expected, despite perhaps being somewhat counterintuitive.

9.2 Variational formulation

Motivated by the shortcomings of conventional Newton-Raphson based solution procedures Krabben-
hoft et al. (2012) developed a new optimization based solution scheme specifically aimed at nonas-
sociated elastoplasticity. The basic principles of this scheme are described in the following.

9.2.1 Friction and plasticity

It is well established that constitutive models of the type described in Section 2 do not permit a vari-
ational formulation unless G = F , that is, unless the flow rule is associated. In this case, the con-
stitutive equations can be cast in terms of a variational statement similar to von Mises’s principle of
maximum plastic dissipation. Moreover, if the yield function is convex, the governing equations may
be cast in terms of a convex mathematical program. Such a formulation allows for a straightforward
analysis of properties related to the existence and uniqueness of solutions. In the general nonas-
sociated case, such a formulation is not possible. Although this shortcoming does not pose any
fundamental obstacles to developing conventional Newton-Raphson based solution methods analo-
gous to those of the associated case, the desirable mathematical properties of associated plasticity
are lost. Moreover, whereas associated plasticity involves a symmetric tangent modulus, a nonas-
sociated flow rule generally gives rise of an unsymmetric set of discrete finite element equations.
Finally, although problems of associated plasticity can be solved very efficiently using methods of
modern mathematical programming, such formulations are not possible in the nonassociated case.

Motivated by the relative efficiency and robustness of numerical algorithms for associated plasticity,
a numerical formulation that retains the desirable properties of associated computational plasticity,
but which is applicable to general nonassociated models, is presented in the following. It should
be noted, however, that the characteristics of nonassociated plasticity in terms of localization of
deformations are retained. This includes the apparent global softening often observed in boundary
value problems involving a perfectly plastic nonassociated model. Similarly, the non-uniqueness
of solutions implied by most nonassociated models also persists and is manifested by a strong
sensitivity to the finite element mesh, boundary conditions, and so on.

9.2.2 Micromechanics of friction

The basic idea behind the formulation derives from the structure of the internal dissipation associated
with constitutive models of the type presented in Sections 2. Let us assume a yield function of the
type

F = Mp + q − k (9.14)
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Figure 9.7: Microscopic origins of friction as plastic shearing of asperities. A higher confining pres-
sure implies a higher degree of interlocking of the asperities and thereby a higher apparent shear
strength.

where p and q are some measure of deviatoric and mean stress respectively, M is a friction coeffi-
cient and k is the cohesion. Furthermore, let the plastic potential be given by

G = Np + q (9.15)

where N ≤ M is a dilation coefficient.

In p–q space, the plastic strain rates are given by

ε̇pv = λ̇
∂G

∂p
= λ̇N ; ε̇ps = λ̇

∂G

∂q
= λ̇ (9.16)

where εpv and εps are the volumetric and deviatoric strains conjugate to p and q respectively. The
internal dissipation associated with the model (9.16) is then given by

D = pε̇pv + qε̇ps

= (Np + q)λ̇

= [k − (M − N)p]λ̇

= [k − (M − N)p]ε̇ps

(9.17)

This expression for the internal dissipation reveals several interesting, albeit well known, features.
Firstly, for an associated material (N = M), the dissipation is proportional to the internal cohesion,
k . As such, no internal dissipation takes place for a purely frictional material (k = 0) which is in
obvious contrast to experimental evidence. Secondly, for N < M , the dissipation is proportional
to an apparent cohesion which comprises two terms: the internal cohesion k and a contribution
−(M − N)p which stems from the prescribed degree of nonassociativity. The interpretation of the
latter term as an apparent cohesion is consistent with the viewpoint that friction results from the me-
chanical interaction of microscopic asperities on the surfaces of the solids in contact (Bowden and
Tabor 1973). With the stresses at the scale of the asperities being much greater than the elastic limit
of the material, it is primarily plastic deformations at the microscale that govern the macroscopically
observed frictional resistance. This point is illustrated in Figure 9.7 which shows two rough surfaces
under different levels of confining pressure. The plastic shearing may be assumed to be of the
ductile, purely cohesive kind. For brittle materials such as sand grains, this assumption is justified
by the very high stress level at the scale of the asperities which effectively renders the otherwise
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brittle material ductile. The apparent shear strength of each assembly thus derives exclusively from
the geometric changes induced by the confining pressure and with Coulomb friction implying a lin-
ear relation between apparent shear strength and confining pressure. This interpretation motivates
rewriting the yield function (9.14) as

F = Np + q − k̃(p) (9.18)

where
k̃(p) = k − (M − N)p (9.19)

is the apparent, pressure dependent, cohesion. This material parameter embodies all the complex-
ities of the actual micromechanics of the frictional interfaces and their evolution in response to the
applied loads. As such, its relative simplicity is surprising, but nevertheless found to be appropriate
for a very broad range of materials although there are also a number of noteworthy exceptions as
discussed for example by Bowden and Tabor (1973).

9.2.3 Time discrete formulation

Suppose now that the apparent cohesion, k̃ , is known. The associated flow rule then produces the
desired result, namely the plastic strain rates (9.16). In the solution of boundary value problems,
the apparent cohesion is of course not known a priori as it is directly proportional to the pressure
that is to be determined as part of the solution. However, assuming that such problems are solved
incrementally via a sequence of pseudo-time steps, some parts of the yield function may, in principle,
be evaluated implicitly while other parts may be evaluated explicitly. Assume that the state at time tn
is known. The yield condition imposed at tn+1 may then be approximated as

F̃n+1 ≈ Fn+1 = qn+1 − Npn+1 − k̃n (9.20)

where
k̃n = k̃(pn) = k − (M − N)pn (9.21)

Again, the associated flow rule produces the desired time discrete result, namely:

(∆εpv )n+1 = ∆λn+1
∂F̃

∂p

∣∣∣∣∣
n+1

= ∆λn+1N

(∆εps )n+1 = ∆λn+1
∂F̃

∂q

∣∣∣∣∣
n+1

= ∆λn+1

(9.22)

However, the explicit evaluation of the apparent cohesion means that the original yield function may
be exceeded for the new stress state at tn+1. Similarly, the approximation may imply plastic yielding
for stress states that would otherwise be deemed purely elastic (see Figure 9.8). However, for small
enough increments, i.e. for tn+1 − tn → 0, it would be expected that the error introduced by the
explicit evaluation of the apparent cohesion would tend to vanish. This supposition is confirmed by
numerical experiments (Krabbenhoft et al. 2012).

Any problem of nonassociated plasticity can thus be transformed into an equivalent approximate
problem of associated plasticity. Effectively, each time step involves the solution of an approximate
associated problem. As such, methods previously developed for associated plasticity are applicable
with little modification. Moreover, variational formulations that subsequently are resolved using either
general or more specialized methods of mathematical programming are applicable. Such methods
are adopted in OptumG2.
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Figure 9.8: Explicit evaluation of apparent cohesion: original and approximate yield functions. The
area indicated by (a) is non-permissible according to the original yield function but permissible ac-
cording to the approximate yield function. Similarly, the area indicated by (b) is non-permissible
according to the approximate yield function but is within the elastic domain according to the original
yield function.

9.2.4 Mohr-Coulomb

With the above considerations, the plane strain Mohr-Coulomb yield function actually implemented
takes the following form:

F̃ =



√
(σx − σy )2 + 4τ 2xy + (σx + σy ) sinψ − 2c̃ cosψ√
(σx − σy )2 + 4τ 2xy + (σx + σy )− 2kt√
(σx − σy )2 + 4τ 2xy − (σx + σy ) sinϕc − 2kc

(9.23)

where

c̃ = c
cosϕ

cosψ
+ 1

2

(
tanψ − sinϕ

cosψ

)
(σx + σy )0 (9.24)

with subscript 0 referring to the current, known, state. In other words, only the regular cone is
modified whereas the tension and compression cut-offs remain unaltered.

9.2.5 Drucker-Prager

Similarly, the Drucker-Prager yield function is given by

F̃ =



1
3
N(σx + σy + σz) +

√
1
2
(σx − σy )

2 + 1
2
(σy − σz)

2 + 1
2
(σz − σx)

2 + 3τ 2xy − k̃√
(σx − σy )2 + 4τ 2xy − 2kt

−1
3
Mc(σx + σy + σz) +

√
1
2
(σx − σy )

2 + 1
2
(σy − σz)

2 + 1
2
(σz − σx)

2 + 3τ 2xy −Mckc

(9.25)
where

k̃ = k + 1
3
(N −M)(σx + σy + σz)0 (9.26)

with subscript 0 referring to the current, known, state. Again, it is only the regular cone that requires
modification while the tension and compression cut-offs remain unaltered.
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9.3 Status of limit analysis

Classic limit analysis relies crucially on the concept of associated flow. Indeed, as discussed in Sec-
tion 6, the upper and lower bound theorems are only valid under the assumption that the flow rule
is associated. For nonassociated flow, the only available result is that an upper bound for a material
with ψ = ϕ is also an upper bound for the corresponding material with ψ < ϕ. In other words, the
limit load calculated on the basis of an associated flow rule is on the unsafe side. How much on the
unsafe side depends both on the degree of nonassociativity (the difference between ϕ and ψ) and
on the particular problem. As described in Section 9.1, it is possible to derive an ‘effective strength
domain’, defined by the effective material parameters ψ∗ and c∗ (for Mohr-Coulomb) or M∗ and k∗

(for Drucker-Prager).

It has long been proposed that these effective parameters can be used in a standard associated plas-
ticity framework to compute ‘nonassociated limit loads’ (e.g. Drescher and Detournay 1993). For the
simple block example of Section 9.1, the effective material parameters would certainly result in the
correct solution. For general problems, solved for example by means of the finite element method,
the use of the effective material parameters in an associated framework also provide reasonable es-
timates of the magnitude of the ultimate limit load resulting from a full elastoplastic calculation with
the correct friction and dilation angles. However, the non-uniqueness implied by the introduction of a
nonassociated flow rule should be borne in mind – as should the fact that the exact value that results
from a finite element analysis will be highly dependent on the geometry, boundary conditions, im-
perfections, as well as the nature of the mesh in terms of its ability to capture the expected localized
modes of deformation. This is illustrated in the example below.

We consider a prismatic sample of a cohesive-frictional material as shown in Figure 9.9. The material
model is Mohr-Coulomb with elastic parameters E and ν and cohesion c and friction angle ϕ both
greater than zero. The top platten, which is assumed smooth, is gradually displaced downwards
while the normal and shear stresses on the vertical sides are maintained at zero. Regardless of the
flow rule, i.e. of the value of ψ, the load-displacement behaviour up to the yield point (A) will be as
shown in Figure 9.10. At this point, the vertical stress is:

qu = 2c tan(45◦ + 1
2
ϕ) (9.27)

corresponding to a continuing state of homogeneous deformation, again independent of the flow
rule (although the homogeneous plastic strain field of course will depend on the flow rule). For the

σ
x  =
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q 

θ

σ
x
 =

 τ
x
y
 =

 0

Figure 9.9: Uniaxial compression test setup (left) and possible mode of localization (right).
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Figure 9.10: Schematic load-displacement behaviour of uniaxial compression test.
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Figure 9.11: Determinant of acoustic tensor (normalized by determinant of elastic modulus) as func-
tion of shear band inclination angle for associated and nonassociated flow rules at point A in Figure
9.10.

associated flow rule this is also the exact (and unique) limit load.

To gain insights into possible localized modes of deformation, the acoustic tensor is examined for
the stress state at point A. The result is shown in Figure 9.11 for an associated flow rule with ψ =
ϕ = 40◦ and for a nonassociated flow rule with ϕ = 40◦ and ψ = 10◦. As seen, the associated flow
rule implies the possibility of a shear band inclined at θ = 45◦+ 1

2
ϕ corresponding to the well-known

slip line solution that results in the collapse load (9.27).
The nonassociated flow rule, on the other hand, allows for the possibility of localizing along a range
of directions. It may be shown that this range is 45◦ + 1

2
ψ ≤ θ ≤ 45◦ + 1

2
ϕ. For the angles in

question, this means that any localized solution defined by a shear band inclination in the interval
50◦ ≤ θ ≤ 65◦ is possible. Following the analysis of Section 9.1.2, it may be shown that the
corresponding collapse load is given by

q∗
u =

c∗ cosϕ∗

sin(θ − ϕ∗) cos θ
(9.28)
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Figure 9.12: Limit load for nonassociated material as function of shear band inclination angle ac-
cording to (9.28). The associated limit load is indicated by the dashed line.

where c∗ and ϕ∗ are given by (9.11). The minimum values is attained for θ = 45◦ + 1
2
ϕ∗ leading to a

collapse load of
q∗
u,min = 2c∗ tan(45◦ + 1

2
ϕ∗) (9.29)

For the entire range of 45◦ + 1
2
ψ < θ ≤ 45◦ + 1

2
ψ, the nonassociated limit load (9.28) is less than

the associated limit load (9.27) while for θ = 45◦ + 1
2
ψ the two coincide (see Figure 9.12). This is

also indicated in Figure 9.10, where the strain magnitude δ in principle is zero, but in finite element
calculations will depend on the thickness of the shear band which is limited from below by the reso-
lution of the mesh.

Interestingly, Figure 9.12 also reveals that the limit load in the nonassociated case is below that of
the associated case outside the range of possible shear band inclinations, i.e. for θ > 45◦ + 1

2
ϕ.

However, the governing equations do not allow for a switch from a homogeneous and a localized
mode of deformation in that range.

In finite element calculations, the above analytical observations are observed by firstly a reduction in
limit load and secondly a high degree of sensitivity to imperfections. An example is shown in Figures
9.13-9.14. Figure 9.13 here shows the load-displacement curves of various simulations of the uni-
axial compression test with ϕ = 40◦. As expected the associated calculation leads to the analytical
limit load (9.27). Next, the dilation angle is set to ψ = 10◦ and the coordinates of the finite element
mesh are perturbed randomly by a magnitude of 10−3 times the width of the sample. This leads to a
family of load-displacement curves that, while following the expected trend of displaying a reduction
in strength, are somewhat different, both in terms of their evolution after the peak as well as in terms
of the final residual load. This illustrates the non-uniqueness discussed above.

Regarding the magnitude of the limit load, it can be seen that it is somewhat above the minimum
magnitude predicted theoretically (9.29). This is due to an inability of the mesh to capture the min-
imum solution defined by a shear band inclination of θ = 62.7◦. Indeed, the localized modes of
deformation shown in Figure (9.13) correspond to θ ≃ 55◦–59◦ and thus, according to (9.28), to a
limit load of q∗

u/c ≃ 3.36–3.61.
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Figure 9.13: Load-displacement curves for uniaxial compression test.

Figure 9.14: Finite element mesh (six-node elements) and different localized modes of deformation
for uniaxial compression test at u = 1.0 (see Figure 9.13).

The trends observed in this example are quite representative of typical problems of practical interest
(Krabbenhoft et al. 2012). In particular, concerning the applicability of limit analysis, the use of
the original c and ϕ lead to an overestimate of the bearing capacity while the use of the effective
parameters c∗ and ϕ∗ leads to an underestimate. While the very nature of nonassociated plasticity
in principle makes it meaningless to speak of the limit load, the effective parameters often provide a
reasonable estimate to what is obtained in a full elastoplastic analysis using the correct c , ϕ and ψ.

9.4 Undrained conditions

While the dilation angle under drained conditions may have some influence of the bearing capacity,
its effect under undrained conditions is much more dramatic. Indeed, the Mohr-Coulomb, Drucker-
Prager and similar models under undrained conditions must be used with a dilation angle or coef-
ficient equal to zero to obtain reasonable results. Indeed, any finite dilation will lead to an infinite
bearing capacity. This result is sometimes presented as a numerical artefact, but is in fact in com-
plete accordance with these models and there is nothing suspect or mysterious about it.

To see this, consider the relation between excess pore pressure and volumetric strain in incremental
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Figure 9.15: Consequence of excess pore generation as a result of plastic dilation.

form:
∆pe = Kws∆εv (9.30)

Clearly, an increase in volumetric strain, ∆εv > 0, leads to an increase in excess pore water pres-
sure, ∆pe > 0. For a fixed total stress, this in turn leads to a decrease in effective mean stress:

∆p′ = ∆p −∆pe = −∆pe (9.31)

For frictional yield criteria, this effectively means that a material point undergoes an apparent ‘hard-
ening’ once yielding commences and dilation results (see Figure 9.15). Consequently, an ultimate
limit state is never attained. A nonassociated flow rule implying zero volumetric straining must there-
fore be used. Thus, with the Mohr-Coulomb model it is necessary to use a nonassociated flow rule
with ψ = 0. Similarly, with the Drucker-Prager model, N = 0 must be used.
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10 SEEPAGE

Many problems in geotechnics involve the flow of water through the soil. Typical problem include
the flow through earth dams and in and out of excavations. Seepage problems may be divided into
two categories: confined and unconfined. In former case, all boundary conditions are known a priori
while in the latter case some of the boundary conditions are to be found as part of the solution. This
situation is sketched in Figure 10.1. The pressures on the submerged boundaries are here known
as is the no-flow condition at the base of the dam. But the location of the free surface is not known
a priori and is to be determined as part of the solution. This complicates matters considerably and
an iterative procedure must generally be used.

p = 0

p = p
0

qn = 0

p = 0

p = 0
{qn ≥ 0

p = 0
{qn = 0

Vs

Vd

y

x

A

B
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G

qy 

qy +
∂qy

∂y

qx +
∂qx

∂x
qx 

p = p
0

D

Figure 10.1: Unconfined seepage problem.

Alternatively, a more general saturated/unsaturated approach may be taken whereby the governing
equations are valid throughout the domain, but involve material parameters that vary significantly
with the degree of saturation. In the following, this is the approach taken.

10.1 Governing equations

Variably saturated flow through porous media can be described by the mass balance equation

n
∂S

∂t
+∇Tq = 0 (10.1)

supplemented with the generalized Darcy’s law

q = −KrK∇hs = −KrK∇
(
y − ps

γw

)
(10.2)

where:

n = Porosity

S = Degree of saturation

q = (qx , qy )
T = Fluid velocity [m/day]

K = Saturated hydraulic conductivity modulus [m/day]

Kr = Relative hydraulic conductivity which is a function of degree of saturation
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y = Vertical coordinate

γw = Unit weight of water (= 9.8 kN/m3)

ps = Pressure

hs = Head (= y − ps/γw )

The effective hydraulic conductivity is the product of the relative conductivity, Kr , and the saturated
conductivity, K:

K =

 Kx 0

0 Ky

 (10.3)

where Kx and Ky are the saturated hydraulic conductivities in the x and y directions respectively.

Combining (10.1) and (10.2) leads to what is sometimes (especially in 1D) called Richards equation:

n
∂S

∂t
= ∇T

[
KrK∇

(
y − ps

γw

)]
(10.4)

For the time being, we are only concerned with steady state solutions so that the above governing
equation simplifies to

∇T

[
KrK∇

(
y − ps

γw

)]
= 0 (10.5)

It should be noted that both the relative hydraulic conductivity, Kr , and the degree of saturation,
S , are highly nonlinear functions of the pressure ps . For further details and relevant relationships,
please refer to the Materials Manual.

10.2 Boundary conditions

Boundary conditions come in the form of standard Dirichlet conditions:

ps = ps,0 (or hs = hs,0) (10.6)

and Neuman conditions:

qn = nTq = q0 (10.7)

where ps,0, hs,0 and q0 are prescribed pressures, heads and fluxes respectively, and n is the outward
normal to the boundary in question. With references to Figure (10.1), the Dirichlet condition is im-
posed on boundaries AB and FG while the Neuman condition is imposed along AG (q0 = 0). At the
free surface BE (the exact location of which unknown), both the pressure and the normal flux are
zero.

Furthermore, along the seepage face EF, the pressure is zero while, at the same time, the normal flux
is required to be non-negative. Such segments are referred to as seepage faces. In OptumG2, all
external boundaries are seepage faces by default and remain so unless another boundary condition
is imposed.
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11 CONSOLIDATION

The most basic consolidation problem is that of a fine grained fully saturated soil being subjected to
a rapidly applied load that is then kept constant. This will lead to some immediate settlements and
to the generation of excess pore pressures. With time, these pressures will dissipate and further
settlements take place. The situation is sketched in Figure 4.1.

In simples cases, the classic theory of Terzaghi may used while, in the more general case, the
theory of Biot is applicable. The latter, which is the basis of the Consolidation analysis in OptumG2,
contains the former as a special case.

11.1 Governing equations

The governing equations of elastoplastic consolidation (assuming linear elasticity/perfect plasticity)
are as follows.

Equilibrium:
∇T[σ′ +mpe ] + b′ = 0 (11.1)

Strain-displacement relations:
ε = εe + εp = ∇u (11.2)

Hooke’s law:
εe = C∆σ′ (11.3)

Flow rule:
εp = λ̇∇F (σ′) (11.4)

Yield and complementarity conditions:

F (σ′) ≤ 0, λ̇F (σ′) = 0, λ̇ ≥ 0 (11.5)

Pore fluid conservation:
∇Tq+ ε̇v = 0 (11.6)

Darcy’s law:

q = −K∇
(
y − ps + pe

γw

)
(11.7)

where q are the fluid velocities, K is the permeability matrix and y is the vertical coordinate. After re-
placing the volumetric strain rate ε̇v by the finite difference approximation ∆ε̇v/∆t, these governing
equations may be cast in terms of the following variational principle:

min
u

max
σ′,pe

Π = −
∫
V

1
2
∆σ′TC∆σ′ dV

+

∫
V

[σ′ +mpe ]
T∆∇u dV −

∫
V

b′T∆u dV −
∫
Sσ

tT∆u dS

−∆t

∫
V

1
2
∇(ps + pe − γwy)

T K
γw

∇(ps + pe − γwy) dV

−∆t

∫
Sq

(ps + pe − γwy)qn dS

subject to F (σ′) ≤ 0

(11.8)
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Assuming that the seepage pressures ps and their associated boundary fluxes are available, this
simplifies to:

min
u

max
σ′,pe

Π = −
∫
V

1
2
∆σ′TC∆σ′ dV

+

∫
V

[σ′ +mpe ]
T∆∇u dV −

∫
V

b′T∆u dV −
∫
Sσ

tT∆u dS

−∆t

∫
V

1
2
∇pT

e

K
γw

∇pe dV −∆t

∫
Sq

peqn dS

subject to F (σ′) ≤ 0

(11.9)

which generalizes the Hellinger-Reissner type principles discussed in previous sections. The Euler-
Lagrange equations are:

δΠ

δσ′ = −C∆σ′ +∆∇u = 0 ⇐⇒ ∆∇u = C∆σ′ + λ̇∇F (σ′)

δΠ

δu
= −∇T[σ′ +mpe ]− b′ = 0 ⇐⇒ ∇T[σ′ +mpe ] + b′ = 0

δΠ

δpe
= mT∆∇u+∆t∇T(

K
γw

∇pe) = 0 ⇐⇒ ∇T(
K
γw

∇pe) +
mT∆∇u

∆t
= 0

δΠ

δλ̇
= F (σ′) ≤ 0, λ̇F (σ′) = 0, λ̇ ≥ 0

(11.10)

where it has been assumed that the following boundary conditions are satisfied:

PT[σ′ +mpe ] = t, on Sσ

K
γw

nT∇pe = qn, on Sq

(11.11)

Following the procedure described in detail in previous sections, the above principle is discretized by
replacing the continuous variables (σ′, pe and u) by their discrete counterparts using finite element
shape functions. Furthermore, it is assumed that the steady state seepage pressures are available.
The following discrete principle then appears:

maximize −1
2
∆σ′TC∆σ′ −∆t 1

2
gTK̂g

subject to BTσ′ + ATpe = fσ

∆t Îg −∆tBppe = 0

F (σ′) ≤ 0

(11.12)

where

C =

∫
V

NT
σCNσ dV , K̂ =

∫
V

K

γw
dV , Î =

∫
V

I dV , (11.13)

BT =

∫
V

BT
uNσ dV , AT =

∫
V

BT
umNp dV , Bp =

∫
V

∇Np dV , (11.14)
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Figure 11.1: Mixed consolidation element (6-node Gauss).

fσ =

∫
V

NT
ub

′ dV +

∫
Sσ

NT
ut dS (11.15)

where a new set of variables, g, has been introduced. It is noted that the above formulation repro-
duces the usual undrained problem for ∆t = 0.

Regarding the exact discretization, it is prudent, for stability issues, to operate with a low-order ap-
proximation of the excess pore pressures. In OptumG2, for the analysis type Consolidation, a linear
and continuous interpolation is always used regardless of the order of the stress and displacement
interpolations. Similarly, the auxiliary variables g are always assumed constant within each element.
An example of such an element is shown in Figure 11.1.

Finally, it is noted that nonassociated flow rules, nonlinear elastic laws, hardening, etc can be used
in OptumG2. The implementation of these features follows that described in the previous sections.
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12 STOCHASTIC ANALYSIS†

It is commonly recognized that typical soil parameters of relevance to design display a not insignifi-
cant spatial variation. In traditional design this is accounted for by using spatially independent “cau-
tious estimates” of the relevant parameters. For example, if a given parameter has been measured
at a number of different locations, one may decide on the final value by using a weighted average
skewed towards the unfavourable end of the measured parameter range.

As an alternative to traditional deterministic analysis, OptumG2 offers the possibility to conduct
stochastic analysis. The spatial variability is here included in the analysis such that not only one
value of bearing capacity, settlement, strength reduction factor is obtained, etc is obtained, but rather
a probability distribution of these.

In OptumG2, spatial variation of the parameters can be taken into account by generating random
fields for specific parameters and subsequently running the analysis via a series of Monte-Carlo
simulations. The end result is probability distributions of the key results of the analysis, for example
bearing capacity (Limit Analysis), settlement (Elastoplastic analysis) or strength reduction factor
(Strength Reduction analysis).

12.1 OptumG2 input

To generate a random field of a given material parameter, four input parameters are required:

1. The mean value of the parameter (30 kPa in Figure 12.1). Gradient, Profile and Map can be
used to specify the spatial distribution of the mean value of the parameter.

2. The coefficient of variation of the parameter (35% in Figure 12.1).

3. The horizontal correlation length of the parameter (50 m in Figure 12.1).

4. The vertical correlation length (1 m in Figure 12.1).

Click to 

open

Figure 12.1: Specification of parameters for stochastic analysis. The mean value (or spatial distri-
bution of mean value) is specified under the Space tab (middle) and the remaining parameters are
specified under the Random tab (right).

†Contributed by Dr Jinsong Huang, University of Newcastle, NSW. Email: jinsong.huang@newcastle.edu.au
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The parameters are specified with respect to an underlying probability density function (Normal or
Lognormal).

1m

CLx = 40 m

CLy = 40 m

CLx = 2 m

CLy = 2 m

CLx = 40 m

CLy = 2 m

x

y

15.0 19.4 23.8 28.1 32.5 36.9 41.3 45.6 50.0

Figure 12.2: Examples of random fields of undrained shear strength. In all cases, the mean value
and coefficient of variation are 30 kPa and 30% respectively.
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The spatial correlation length describes the distance over which the spatially random values will tend
to be significantly correlated. A large value will thus imply a smoothly varying field while a smaller
value will imply a more ragged field. Some examples are shown in Figure 12.2. It is usually assumed
that the spatial correlation structure of all engineering properties of rocks and soils are identical. That
is, the correlation structure of, say, the friction angle is assumed to be identical to that of the Young’s
modulus. It is commonly recognized that the horizontal correlation length is rather larger than the
vertical correlation length. Phoon and Kulhawy (1999) conducted a literature review and concluded
that the horizontal correlation length is of order 40-60 m while the vertical correlation length is in the
range of 2-6 m.

Other than the physical parameters, further parameters related to stochastic analysis are available
in Project under Stochastic Parameters. These include:

• The number of Monte Carlo runs (default = 1,000).

• The seed used to generate the random field. The seed increases by 1 for each new Monte
Carlo run. Thus, in order to recover the problem of the n’th run in a Monte Carlo simulation,
the seed can be set to n and a single Monte Carlo run performed.

12.2 OptumG2 output

The output from analyses with random parameters are the probability density and cumulative density
functions for various quantities of interest depending on the analysis type. For Limit Analysis the col-
lapse multiplier is recorded, for Strength Reduction analysis the strength reduction factor is recorded
while for Elastoplastic analysis key data such as displacements at Result Points are recorded. Ad-
ditionally, as described above, to recover the full solution of the n’th Monte Carlo run, the seed
(Project/Stochastic Parameters) should be set equal to n and a single Monte Carlo run performed.

If more information than what is available by default is required, the command line version of the
program, OptumG2Cmd, is useful. A desired number of input files can first be generated, each with
a different seed and set to perform a single Monte Carlo run. These can then be run using Op-
tumG2Cmd and the results further processed via an external script.

12.3 Random field theory

The following section gives a brief overview of the concept of random fields and the generation of
these fields.

Let X (x,ω) be a random field, where x ∈ D defines the physical space and ω ∈ Ω defines the
probability space. The correlation structure of a random field is modeled by the covariance function,
denoted by CX (s, t), where s, t ∈ D, are bounded, symmetric and positively defined.

The first issue in the application of random field theory is the selection of a probability distribution
for the field. Although many probability distributions can be used, the lognormal distribution has
some distinct advantages and is commonly used to model the engineering properties of soils and
rocks. The lognormal distribution offers the advantage of simplicity in that it is arrived at by a simple
nonlinear transformation of the classic normal Gaussian distribution. Furthermore, the lognormal
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distribution guarantees that the random variable is always positive.

Secondly, regarding the covariance function, there are several possibilities (e.g. Fenton and Griffiths
2008) with the exponential covariance function often being the function of choice. Besides the mean
and standard deviation, the covariance function also involves the spatial correlation length.

12.3.1 Karhunen-Loeve expansion

Several random field generation methods are available (see e.g. Fenton and Griffiths 2008). In
OptumG2, the Karhunen-Loeve expansion method is used. This method is convenient as it provides
analytical solutions for the exponential covariance function. Using Mercer’s theorem, the covariance
function can be decomposed according to

CX (s, t) =
∞∑
i=1

λi fi(s)fi(t) (12.1)

where λi and fi are, respectively, the eigenvalues and eigenfunction of the CX .

Since the above sum has to be truncated to a finite number of terms, a significant concern is that
the simulated variance will be reduced. In order to control this reduction, the eigenvalues are sorted
in descending order and the number of terms, n, is decided on by the eigenvalues having decayed
sufficiently to satisfy the condition

λn
λ1

≤ TOL (12.2)

where TOL typically is set to 10−5.

12.4 Risk

Most stochastic analyses of the kind that are possible to carry out in OptumG2 are aimed at de-
termining the probability of failure, or of the settlement exceeding a certain magnitude, or similar.
Moreover, the full probability density function is also determined, thus providing valuable information
on the sensitivity of the problem.

The concept of risk takes this type of analysis one step further by not only considering the probability
of a certain event (e.g. failure) but also quantifying the consequences of such events. While the
consequence of a certain event obviously is highly problem dependent, a general measure that often
would be of interest in connection with failure is the volume of the soil mobilized. This is particularly
relevant for slope stability where a deep seated failure usually would imply a higher consequence
than a more shallow one. Consequently, in OptumG2, the volume of soil mobilized in each Monte
Carlo run is recorded. Following Huang et al. (2013), the risk, R , may then be defined as

R =
1

N

N∑
i=1

Ci ,fail (12.3)

Ci ,fail is the volume of mobilized soil for the i ’th – assuming that this run implies failure, otherwise
Ci ,fail = 0.
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In OptumG2, slope stability analysis would usually be carried out using either Strength Reduction
analysis or Limit Analysis with Multiplier = Gravity. In both cases, strength reduction factor/collapse
multiplier less than 1 implies failure while a value above 1 implies that the system is stable. Since
the volume of mobilized soil is recorded for all runs, a manual filtering is necessary for the risk to be
calculated according to the above.

67



FINITE ELEMENT TECHNOLOGY

13 FINITE ELEMENT TECHNOLOGY

In this section the solid elements available in OptumG2 are detailed. These include elements that
lead to rigorous upper and lower bounds on the exact solution as well as ‘mixed’ elements that often
are more accurate but which do not lead to rigorously bounded solutions.

13.1 Lower bound element

Consider the elastoplastic lower bound principle:

maximize α−
∫
V

1
2
∆σ′TC∆σ′ dV −

∫
V

1
2
∆κTH−1∆κ dV

subject to ∇T[σ′ +mps +mpe ] + b = 0 in V

PT[σ′ +mps +mpe ] = αtext + ts on Sσ

F(σ′,κ) ≤ 0

(13.1)

As shown in Section 8, any stress field that satisfies the constraints of this problem leads to a lower
bound estimate of the objective function – which in the case of rigid plasticity (C = H−1 = 0) is the
collapse multiplier. With the equilibrium equations involving first derivatives and considering that the
yield function must be satisfied everywhere, the obvious candidate for a lower bound element is a
triangle with a linear variation of the stresses between the corner nodes. This element, shown in
Figure 13.1, is capable of satisfying all the above constraints provided that unit weight, b, is constant
over the element, that the seepage pressures, ps , vary linearly within each element, and that the
yield conditions are enforced at the three corner nodes.

σ1

σ2

σ3

u

x

y

Figure 13.1: Lower bound element.

We introduce the following finite element approximations for the stresses and the excess pore pres-
sures:

σ′ ≈ Nσσ̂

κ ≈ Nκκ̂

ps ≈ Ns p̂s

pe ≈ Ne p̂e

(13.2)

where σ̂′, κ̂, p̂s , and p̂e are the nodal effective stresses, hardening variables, steady state pore pres-
sures and excess pore pressures respectively and Nσ, Nκ, Ns and Ne contain the respective linear
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δ = 0

Figure 13.2: Lower bound elements joined by two zero-thickness elements to produce a statically
admissible stress discontinuity.

shape functions. Typically, the hardening variables and excess pore pressures are interpolated in
the same fashion as the stresses, i.e. via linear shape functions.

The discrete equilibrium equations may then be written as

BTσ′ + ATpe + b′ = 0 (13.3)

where
b′ = b+ ATps (13.4)

with

BT = ∇TNσ =
1

2A
[l1P

T
1 l2P

T
2 l3P

T
3] (13.5)

and

A = ∇T(mNs) =
1

2A
[l1P

T
1m l2P

T
2m l3P

T
3m] (13.6)

The above equilibrium equation can here be multiplied by the element area, A, to obtain a set of
equations that are valid even for a zero-thickness element. This property can be utilized to construct
statically admissible stress discontinuities between elements. The typical situation is shown in Fig-
ure (13.2) where two ‘continuum elements’ are connected by a patch of zero-thickness elements
of exactly the same type. The four equilibrium equations established in the zero-thickness patch
effectively impose continuity in the normal and shear stresses at each end of the interface and thus
along the entire interface.

Evaluating the quadratic term in the objective function of (13.1) by standard Gauss quadrature such
that C =

∫
V
NT

σCNσ dV and H∗ =
∫
V
NT

κH−1Nκ dV , the final discrete optimization problem to be
solved reads:

maximize α− 1
2
∆σ̂TC∆σ̂ − 1

2
∆κ̂TH∗∆κ̂

subject to BTσ′ + ATpe + b′ = 0

PT[σ̂′ +mp̂s +mp̂e ] = αtext + ts on Sσ

Fj(σ̂
′
j , κ̂j) ≤ 0, j = 1, ... ,Nσ

(13.7)

where the yield conditions are enforced at each of the Nσ stress points.

69



FINITE ELEMENT TECHNOLOGY

The above formulation is a generalization of the standard lower bound element originally conceived
for limit analysis applications (see Lyamin 1999; Lyamin and Sloan 2002a; Sloan 1988, and refer-
ences therein).

13.2 Mixed elements

Consider the elastoplastic Hellinger-Reissner principle:

min
∆u

max
σ,κ,α,pe

α+

∫
V

(σ′ +mpe)
T∇∆u dV −

∫
V

1
2
∆σ′TC∆σ′ dV −

∫
V

1
2
∆κTH−1∆κ dV

−
∫
V

[∇T(mps) + b]T∆u dV −
∫
Sσ

(αtT
ext + ts)∆u dS

subject to F (σ′,κ) ≤ 0

(13.8)
The discretization of this principle proceeds by specifying approximations for the variables involved,
namely the effective stresses, pore pressures and displacements. Using standard finite element
terminology, these are given by

σ′ ≈ Nσσ̂
′

κ ≈ Nκκ̂
u ≈ Nuû
ps ≈ Ns p̂s

pe ≈ Ne p̂e

(13.9)

Although there in principle is some freedom in choosing the various shape functions, we will make
the following assumptions: i) the displacements are continuous between elements, ii) the stresses,
hardening variables, and excess pore pressures are approximated in the same manner and are dis-
continuous between elements, and iii) the polynomial degree of the former is one order higher than
that of the latter. With these assumptions, standard finite elements originating from direct application
of the principle of virtual work and involving only the displacements as unknowns can be reproduced
as a special case.

Inserting the above approximations into (13.8) leads to the following discrete problem:

min
∆û

max
σ̂,κ̂,α,p̂e

α +∆ûT[BTσ̂ + ATp̂e ]− 1
2
∆σ̂TC∆σ̂ − 1

2
∆κ̂TH∗∆κ̂− αp− p0

subject to F (σ′,κ) ≤ 0
(13.10)

where

B =

∫
V

NT
σ∇Nu dV , A =

∫
V

NT
em

T∇Nu dV

C =

∫
V

NT
σCNσ dV , H∗ =

∫
V

NT
κH−1Nκ dV

p =

∫
S

NT
utu dS , p0 =

∫
V

NT
u[∇T(mNsps) + b] dV +

∫
S

NT
uts dS

(13.11)

The problem (13.10) may be solved with respect to the incremental displacements to yield the final
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problem:

maximize α− 1
2
∆σ̂TC∆σ̂ − 1

2
∆κ̂TH∗∆κ̂

subject to BTσ′ + ATpe = αp+ pe

Fj(σ̂
′
j , κ̂j) ≤ 0, j = 1, ... ,Nσ

(13.12)

The above formulation is similar to the one proposed by Krabbenhoft and Lyamin (2012) and is a
generalization of earlier formulations by Krabbenhoft et al. (2007a,b).

13.2.1 Gaussian and Lagrangian families

As mentioned above, the stresses are interpolated using shape functions that are one polynomial
order lower than those used for the displacements. Moreover, the displacement shape functions are
always Lagrange polynomials with the nodes located at the so-called Lagrange points. The location
of the stress points, on the other hand, is less obvious. One possibility is the Gauss points while
another is the Lagrange points. In OptumG2, each of these possibilities are considered and the
corresponding elements are labeled accordingly (Gauss or Lagrange).

An example is shown in Figure 13.3. The displacements here vary quadratically while the stresses
vary linearly. For the Gauss elements, the stress points are the Gauss points with Barycentric coor-
dinates (λi ,λj ,λk) = (4

6
, 1
6
, 1
6
) while the Lagrange element uses the corner nodes as interpolation

points.

Gauss Lagrange

Displacement node

Stress node

Figure 13.3: Quadratic displacement/linear stress triangles of the Gauss and Lagrange types.

13.2.2 Upper bound elements

Upper bound elements may be constructed directly on the basis of upper bound principles such
as (6.17). Alternatively, they may be be derived as special cases of mixed elements. This latter
approach is in many ways preferable as it avoids any explicit use of the dissipation function (which
may not be straightforward to derive although it in principle can be done once the yield function is
available).

Two upper bound elements are possible: a linear displacement/constant stress triangle (see Lyamin
and Sloan 2002b; Sloan 1989, and references therein) and a quadratic displacement/linear stress
triangle first proposed by Yu et al. (1994). The former appears as the only mixed element possible
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in this case. The latter appears as a special case of a mixed element where the stresses are
interpolated on the basis of the Lagrange points and the Lagrange points are used as integration
points, with equal weights, for the matrices B and A in (13.11). The formulation of upper bound
elements as special cases of mixed elements is discussed by Krabbenhoft et al. (2007a,b).

Lower

Linear interpolation of stresses. Statically admissible stress discontinuities are

included between elements. 

Notes: This element produces rigorous lower bounds on the collapse load. The 

displacements are constant within each element.

Upper

Quadratic interpolation of displacements and linear intepolation of stresses. 

The B matrix is integrated using the triangle vertices.

Notes: This element produces rigorous upper bounds on the collapse load. The

displacements are continuous between elements. 

 

6-node Gauss

Quadratic interpolation of displacements and linear intepolation of stresses. The 

B matrix is integrated exactly using Gauss points (λi, λj, λk) = (4/6, 1/6, 1/6).

Notes: Although not rigorous, the collpase multipliers produced by this element

tend to converge from above. 

15-node Gauss

Quartic interpolation of displacements and cubic interpolation of stresses 

(not  shown). The B matrix is integrated exactly using Gauss quadrature. 

Notes: Although not rigorous, the collpase multipliers produced by this element

tend to converge from above.

6-node Lagrange (Others)

Quadratic interpolation of displacements and linear intepolation of stresses. The 

B matrix is integrated exactly. The yield condition is satis!ed throughout the 

element while the "ow rule is imposed in an approximate manner. 

Notes: This element tends to lead to more accurate results than the 6-node 

Gauss element. However, it should not be used for purely frictional materials.  

3-node Gauss (Others)

Linear interpolation of displacements and constant stresses. Kinematically ad-

missible displacement discontinuities should be included between elements. 

Notes: This element produces rigorous upper bounds on the collapse load. May

lead to better results than Upper for highly con!ned problems. 

Displacement node Stress node Integration point

Figure 13.4: Selection of elements available in OptumG2.
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13.2.3 Overview of elements

An overview of some of the elements available in OptumG2 is given in Figure 13.4.

13.2.4 Discontinuities

Discontinuities may be introduced by collapsing patches of regular continuum elements to zero thick-
ness (see Krabbenhoft et al. 2005; Lyamin et al. 2005, 2011, for details). Such discontinuities are
included by default between all solid domains.
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14 NUMERICAL OPTIMIZATION

The association between optimization and computational limit analysis is long established. Indeed,
all computational limit analysis procedures lead directly to optimization problems. In contrast, the
application of optimization methods as a means of solving elastoplastic problems is more unusual.
However, the idea of applying optimization algorithms to such problems is an old one going back at
least to the work of Giulio Maier and his coworkers in the 1960s (Maier 1968a,b, 1984).

The application of the finite element method to nonlinear constitutive models involving nonlinear
elasticity, plasticity, hardening, etc generates systems of nonlinear equations. Typically, these must
be solved in the course of a number of load steps (as in static elastoplastic analysis) or time steps
(as in consolidation analysis). The most common approach to the solution of nonlinear finite element
equations is the classic Newton-Raphson method. The nonlinear equations are here linearized and
a problem that resembles one of linear elasticity is solved in a sequence of iterations until conver-
gence, i.e. until the original nonlinear equations are satisfied to within some specified tolerance.

In OptumG2 a different approach is used. Instead of solving the nonlinear equations directly, an
equivalent optimization problem is solved instead, the solution to which satisfies the original equa-
tions. Consider as an example, the nonlinear equation:

x − 2e−x = 1 (14.1)

Application of the Newton-Raphson method to this equation is straightforward, eventually leading to
the solution x = 1.4630555.

The Optum approach would instead consider the optimization problem:

minimize 1
2
(x − 1)2 + 2e−x (14.2)

To solve this problem, we differentiate the objective function (the function being minimized) and set
the result equal to zero:

d

dx

[
1
2
(x − 1)2 + 2e−x

]
= 0 ⇐⇒ (x − 1)− 2e−x = 0 ⇐⇒ x − 2e−x = 1 (14.3)

which recovers the original nonlinear equation 14.1. We can then proceed with any method of
choice, including Newton-Raphson, to solve the resulting equation – in optimization terminology, the
optimality condition.

For this particular problem, the two approaches are completely identical. For more complex prob-
lems, however, the optimization approach is usually technically superior to the traditional one in
terms of efficiency and robustness. These include both problems of elastoplasticity and of limit
analysis where the optimization approach is the only feasible one.

14.1 Algorithms

The earliest algorithms applied to limit analysis were designed for linear programming (LP). That is,
algorithms capable of solving linear programming problems of the type:

minimize cTx

subject to Ax = b

Bx ≤ d

(14.4)
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Both upper and lower bound limit analysis can be cast in this form. In lower bound limit analysis
the objective function would comprise the load multiplier, the equality constraints would represent
the equilibrium equations and the inequality constraints would account for the yield condition. Since
most practical yield conditions are nonlinear, a linearization has to be performed before the problem
can be set up as a linear program. While such linearizations (internal or external to the original
yield surface as desired) are straightforward to formulate, early LP algorithms suffered from the trait
that their running time were exponentially dependent on the number of constraints. It was therefore
hailed as a major breakthrough when Karmarkar announced the discovery of a polynomial time al-
gorithm in 1984 (not just in academic circles but also in the mainstream media, see Figure 14.1).
While there was significant excitement, even hype, around the new algorithm and its potential for
commercial exploitation, it was quickly discovered that it in fact was closely related to the so-called
Sequential Unconstrain Minimization Techniques proposed earlier by Fiacco and McCormick (1968).
A notable feature of these techniques is that they are equally applicable to linear and nonlinear pro-
gramming whereas earlier methods distinguished sharply between the two. These insights came to
define much of the research in the field in the decades that followed. Labeled interior-point methods,
the class of algorithms of which Karmarkar’s is one is commonly viewed as having revolutionized the
field of numerical optimization (Wright 2004).

Interior-point methods are applicable to problems that can be written as

minimize f (x)

subject to Ax = b

gi(x) ≤ 0, i = 1, ... , n

(14.5)

where f and g usually are assumed convex.

In a further development, realizing that much could be gained in terms of devising efficient and robust
algorithms for more restricted classes of problems than the most general convex one, algorithms
for so-called conic programming were proposed (see e.g. Ben-Tal and Nemirovski 2001). Conic
programs are often written in the following standard form:

minimize cTx

subject to Ax = b

x ∈ K
(14.6)

where K is a cone. Examples of cones include the quadratic cone:

Kq : x1 ≥
√
x22 + · · ·+ x2n (14.7)

and the positive semidefinite cone in which a square matrix of variables is required to be positive
semidefinite

Kp : X =

 x11 · · · x1n
...

. . .
...

xn1 · · · xnn

 ≽ 0 (14.8)

Both these cones are of interest in plasticity – the first for the modeling of quadratic yield criteria
such as Drucker-Prager while second can be used to model the Mohr-Coulomb criterion.
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Figure 14.1: News clippings related to Karmarkar’s algorithm (collected by RJ Vanderbei,
http://orfe.princeton.edu/∼rvdb/pdf/talks/pumath/talk.pdf).
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A further specialization of general conic programming is second-order cone programming (SOCP)
which considers only quadratic constraints, i.e. the quadratic cone (14.7) and the rotated quadratic
cone:

Kr : 2x1x2 ≥ x23 + · · ·+ x2n (14.9)

The algorithms SONIC/Serial and SONIC/Parallel included in OptumG2 are SOCP algorithms. A
partial list of papers dealing with the application of SOCP (as well as general conic programming) to
plasticity problems is as follows:

• Makrodimopoulos and Martin (2006, 2007): plane strain Mohr-Coulomb limit analysis using
SOCP.

• Krabbenhoft et al. (2007a): limit analysis and elastoplasticity for plane strain Mohr-Coulomb
problems, limit analysis and optimal design of reinforced concrete plates using SOCP.

• Krabbenhoft et al. (2008): 3D Mohr-Coulomb limit analysis using semidefinite programming.

• Krabbenhoft and Lyamin (2012): drained and undrained elastoplastic analysis of plane strain
Modified Cam Clay problems using SOCP.

• Krabbenhoft et al. (2012): nonassociated elastoplastic analysis using SOCP.

• Zhang et al. (2013): dynamic large deformation analysis and granular flows governed by Mohr-
Coulomb using SOCP.

14.2 Approximation of non-quadratic problems

OptumG2 makes use of SOCP only. This poses somewhat of a challenge as many of the problems
dealt with are not quadratic in nature. The Hoek-Brown criterion, for example, is not quadratic. Simi-
larly, both the elastic law and the hardening law of Modified Cam Clay are not quadratic. However, it
is relatively straightforward to approximate these problems in terms of quadratic problems and then
solve the resulting approximate problems in a sequence of fixed-point iterations.

To illustrate the typical procedure, consider again the problem:

minimize 1
2
(x − 1)2 + 2e−x (14.10)

The second term is here non-quadratic and cannot be dealt with directly using SOCP. Instead, con-
sider the approximation given by the second-order Taylor expansion about a point x0:

2e−x ≈ 2e−x0 − 2(x − x0)e
−x0 + (x − x0)

2e−x0 (14.11)

We then have

minimize 1
2
(x − 1)2 + [2e−x0 − 2(x − x0)e

−x0 + (x − x0)
2e−x0] (14.12)

which can be solved using SOCP. Starting with x0 = 0, we obtain the solution

x = 1.0000000 (14.13)

Next, setting x0 = 1 and solving again gives the solution

x = 1.4238831 (14.14)

Using this solution for x0 gives
x = 1.4628094 (14.15)

and so on until convergence to the correct solution of x = 1.4630555.
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15 VERIFICATION AND VALIDATION

A central question faced by user of finite element software is to what extent the results can be taken
at face value – to what extent do they represent reality, to what extent are well-known analytical solu-
tions reproduced, etc. The basic idea behind the concepts of Verification and Validation (V&V) is to
aid in answering these questions in a systematic manner. V&V has been used extensively in product
design and software engineering and have in recent years also found its way into the mechanics of
materials, computational mechanics, and related fields.

V
E
R
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A
T
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N

PHYSICAL REALITY

CONCEPTUAL MODEL

(SIMPLIFIED PHYSICAL REALITY)

MATHEMATICAL MODEL

(GOVERNING EQUATIONS)

COMPUTATIONAL MODEL

(DISCRETE GOVERNING EQUATIONS)

MODEL OF PHYSICAL REALITY

Discretization errors

Numerical errors

Modeling errors

Observational errors

V
A
L
ID
A
T
IO
N

QUESTION

DECISION

Figure 15.1: From question to decision using numerical analysis.

The use of numerical analysis begins by posing a relevant question. For example: what is the bear-
ing capacity of a given foundation, what should the dimensions of a sheet pile wall supporting a given
excavation be, etc. The process of a arriving at an answer to such questions, and thereby make the
relevant decisions, is usually approached via the sequence of steps sketched in Figure 15.1.
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The first task consists of establishing a conceptual model, i.e. an abstraction and eventually sim-
plification of physical reality. In the conceptual model, only the subset of physical phenomena that
is thought to have an influence on the problem that we eventually want to describe is included. In
addition, the establishment of the conceptual model involves collecting and organizing relevant ob-
servations, for example on the response of the material in laboratory tests, site geometry, ground
water conditions, etc.

Secondly, on the basis of observations and possibly more ‘fundamental’ theories, a mathematical
model is formulated. By a mathematical model is meant a set of equations that, as a minimum,
captures the available observations and that further is expected to make useful predictions outside
the region of experience. For solid mechanics problems, these would typically include equilibrium
equations, strain-displacement relations and stress-strain relations.

The third task is to solve the governing equations. This may be done by approximating the continu-
ous variables (displacements, stresses, etc) of the original governing equations in terms of discrete
counterparts. The finite element method, where the continuous variables are approximated on the
basis of element shape functions and the discrete nodal variables, offers one way of discretizing the
governing equations. The resulting set of discrete equations are referred to as the computational
model and must in practice be solved numerically.

Finally, by solving the discrete governing equations, we arrive at a solution, i.e. a set of stresses,
displacements, etc, on the basis of which further decisions can be made.

The idea behind V&V is to gauge the usefulness of this solution in a systematic manner. Though
often confused, verification and validation are two independent procedures. In the present context,
we may say that the two procedures involve the following questions:

Validation: is the mathematical model suitable in terms of capturing the physical reality?

Verification: are the equations that comprise the mathematical model solved correctly?

or:

Validation: are the correct equations solved?

Verification: are the equations solved correctly?

It is important to deal with these two questions separately and, more generally, to recognize that
the final solution is influenced by errors at several different stages in the process of arriving at the
numerical solution.

15.1 Verification

The process of verification and validation begins from the end, i.e. with the computed solution. This
must first and foremost be verified as actually satisfying the discrete governing equations. Although
this task is relatively straightforward (the solution is simply inserted into the discrete equations), the
task of ensuring that the correct solution is computed is not. Indeed, the discrete equations asso-
ciated with typical geomechanics problems tend to be highly nonlinear, will usually involve certain
types of singularities, and are often ill-posed. These difficulties are in addition to standard numerical
problems such as truncation and round-off errors. It is therefore not uncommon that a significant
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error results from the process of solving the discrete governing equations alone. And although most
finite element programs – including OptumG2 – provide information about the final solution accuracy
and have in-built procedures for detecting errors of an unacceptable magnitude, it is ultimately the
responsibility of the user to ensure that the computed solution satisfies the discrete governing equa-
tions to within an acceptable tolerance.

A second, and usually more common and serious error is that which results from the discretiza-
tion of the governing equations. Using standard finite element methods, the only real information
about the inherent error is that the computed solution is on the unsafe side in the sense that the
bearing capacity is overestimated and the settlements are underestimated. No robust and general
means of estimating the magnitude of the error is available. Typically, one therefore carries out a
convergence analysis where the mesh is gradually refined until it is observed that some key quanti-
ties (displacements, reactions, etc) attain steady values. Although this procedure in many cases is
quite appropriate, it has certain limitations, the most important of which is that the number of finite
elements required to attain convergence may be prohibitively large. Similarly, care must be taken
that convergence really is attained, i.e. that the rate of change from one mesh to the next really is
sufficiently small for the solution to be deemed converged.

As an alternative to the this approach, it is in some cases possible to construct finite element ap-
proximations where it can be guaranteed that certain quantities are either underestimated or over-
estimated. Such elements are implemented in OptumG2 and may be used to compute upper and
lower bounds on the bearing capacity or factor of safety of geostructures. Similarly, bounds on the
elastic energy may be computed such that solutions that are either ‘too stiff’ or ‘too flexible’ can be
obtained. As such, using OptumG2, the verification of the computational model against the math-
ematical models consists of refining the mesh until the gap between the upper and lower bound
solutions is deemed sufficiently small. Denoting the lower bound solution by L and the upper bound
solution by U , the exact solution, E , is bounded by

L ≤ E ≤ U (15.1)

Alternatively, the exact solution can be approximated by the mean value between the upper and
lower bounds:

M = 1
2
(U + L) (15.2)

We then have
E = M ± εabs = M(1± εrel) (15.3)

where εabs and εrel are the absolute and relative errors, respectively, which are bounded by

εabs ≤ M − L (15.4)

and

εrel ≤
M − L

M
(15.5)

As an example, consider a strip footing of width B subjected to a central vertical load q and resting
on a purely frictional material with unit weight γ and friction angle ϕ = 30◦. For this problem, the
exact bearing capacity is E = 2qu/Bγ = 14.75. Suppose that a lower bound of L = 12.0 and
an upper bound of U = 17.0 have been computed. The mean value between the upper and lower
bounds is then

M = 1
2
(U + L) = 14.5 (15.6)
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giving a relative error of

εrel ≤
M − L

M
= 17% (15.7)

In other words, the exact solution is given by

E = 14.5± 17% (15.8)

As indicated by this example, the actual error in the mean value between the upper and lower bounds
is much smaller than suggested by the worst-case scenario. Indeed, with a mean value of M = 14.5
and an exact solution of E = 14.75, the actual error is only about 1.7%). In practice, the upper and
lower bounds tend to converge at the same rate to the exact solution, i.e. E − L ≈ U − E , such
that E ≈ M = 1

2
(U + L) often is a very good estimate of the exact solution, even for very coarse

meshes.

15.2 Validation

The second part of the V&V procedure aims to first of all validate the mathematical model against the
conceptual model. For this purpose, one usually has to rely on incomplete observations such as the
response of the representative soil samples in laboratory experiments and possibly measurements
of deformations, pore pressure changes, etc during the construction phase. In addition, certain types
of expected response should be validated. For example, the surface settlements at some distance
from a vertically loaded foundation should tend to zero. Some of the more common model errors
made in translating the conceptual model into a mathematical model include:

• Shortcomings in the material model

• Inappropriate initial stress distributions

• Inappropriate initial pore pressure distributions

Secondly, the conceptual model itself must be scrutinized and held up against physical reality. Rel-
evant questions include:

• Have certain observations been misinterpreted?

• Is the conceptual model too simple?

• Have all relevant phenomena been considered?

These and related questions are often not easily answered unequivocally and will inevitably involve
a substantial amount of judgment that is not easily quantified.

15.3 Proper use of V&V

The key feature of the Verification and Validation framework described above is that it facilitates a
rigorous analysis of the possible errors generated at each step on the way from physical reality to
numerical solution. In particular, it stresses that it is not the final numerical solution that should
be compared directly with physical reality. Indeed, it may well be that errors made at the different
stages counteract each other. For example, using a substandard finite element discretization in
conjunction with an equally inappropriate constitutive model might well lead to a ‘better’ result than if
a higher quality finite element discretization was employed with the same constitutive model. Proper
use of V&V would identify this scenario as being fundamentally unsatisfactory as a given solution
can only be deemed acceptable if the errors involved in each of the stages towards obtaining it are
acceptable.
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