Op+um^{CE}

AUS: ANISOTROPIC UNDRAINED SHEAR STRENGTH MODEL FOR CLAY

KRISTIAN KRABBENHOFT Optum Computational Engineering

Undrained analysis

Op+um^{CE}

 $\int \sigma_1 / s_u$

TC

- Clay under undrained conditions
- Two parameters: s_u and G (may vary with depth)
- Reasonable for both deformations (with adequate G, e.g. G₅₀) and ultimate capacity
- Theoretical basis: can be derived from effective stress Mohr-Coulomb model (for plane strain)

Op+um^{CE}

- Clay under undrained conditions
- Two parameters: s_u and G (may vary with depth)
- Reasonable for both deformations (with adequate G, e.g. G₅₀) and ultimate capacity
- Theoretical basis: can be derived from effective stress Mohr-Coulomb model (for plane strain)

Op+um^{ce}

- Clay under undrained conditions
- Two parameters: s_u and G (may vary with depth)
- Reasonable for both deformations (with adequate G, e.g. G₅₀) and ultimate capacity
- Theoretical basis: can be derived from effective stress Mohr-Coulomb model (for plane strain)

Op+um^{cr}

- Clay under undrained conditions
- Two parameters: s_u and G (may vary with depth)
- Reasonable for both deformations (with adequate G, e.g. G₅₀) and ultimate capacity
- Theoretical basis: can be derived from effective stress Mohr-Coulomb model (for plane strain)

Op+um^{CE}

 $\int \sigma_1 / s_u$

TC

- Clay under undrained conditions
- Two parameters: s_u and G (may vary with depth)
- Reasonable for both deformations (with adequate G, e.g. G₅₀) and ultimate capacity
- Theoretical basis: can be derived from effective stress Mohr-Coulomb model (for plane strain)

Undrained shear strength

Triaxial compression test

Op+um^{ce}

Undrained shear strength

Triaxial compression test

Op+um^c

Undrained shear strength

Triaxial compression test

Op+um^{ce}

Undrained shear strength

Triaxial extension test

Op+um^{ce}

Undrained shear strength

Triaxial extension test

Failure (TC): $\frac{1}{2}|s_1 - s_3| = \frac{1}{2}q = s_{uc}$

Failure (TE): $\frac{1}{2} |s_1 - s_3| = \frac{1}{2}q = s_{ue}$

Op+um^c

Undrained shear strength

Triaxial extension test

Failure (TC): $\frac{1}{2}|s_1 - s_3| = \frac{1}{2}q = s_{uc}$

Failure (TE): $\frac{1}{2} |s_1 - s_3| = \frac{1}{2} q = s_{ue}$

Questions:

1. Do we have $s_{ue} = s_{uc}$?

Op+um^{ce}

Undrained shear strength

Triaxial extension test

Failure (TC): $\frac{1}{2} |s_1 - s_3| = \frac{1}{2}q = s_{uc}$

Failure (TE): $\frac{1}{2} |s_1 - s_3| = \frac{1}{2} q = s_{ue}$

Questions:

1. Do we have $s_{ue} = s_{uc}$? 2. Do we expect $s_{ue} = s_{uc}$?

Tresca

Tresca

Tresca

Tresca

Tresca

Tresca

 σ_3

Generalized Tresca

 $F_u = s_1 - s_3 + (s_{ue}/s_{uc} - 1)(s_1 - s_2) - 2s_{uc}$

Krabbenhoft, K. and Lyamin, A. V. (2015) Géotechnique Letters 5, 313–317, http://dx.doi.org/10.1680/jgele.15.00120

Generalised Tresca criterion for undrained total stress analysis

K. KRABBENHOFT* and A. V. LYAMIN*

A new failure criterion, the generalised Tresca criterion, for undrained total stress analysis is presented. The criterion is consistent with an underlying effective stress Mohr-Coulomb model. It involves two parameters: the undrained shear strengths in triaxial compression and extension. As such, the model predicts different strengths in compression and extension without introducing any physical anisotropy due to layering, direction of deposition and so on. The model is applied to a number of boundary value problems, where the effects of an extension/compression shear strength ratio less than unity generally turns out to be relatively moderate.

KEYWORDS: clays; geotechnical engineering; solid mechanics

ICE Publishing: all rights reserved

Limitation:
$$\frac{1}{2} \le \frac{s_{ue}}{s_{uc}} \le 1$$

Krabbenhoft, K. and Lyamin, A. V. (2015) Géotechnique Letters 5, 313–317, http://dx.doi.org/10.1680/jgele.15.00120

Generalised Tresca criterion for undrained total stress analysis

K. KRABBENHOFT* and A. V. LYAMIN*

A new failure criterion, the generalised Tresca criterion, for undrained total stress analysis is presented. The criterion is consistent with an underlying effective stress Mohr-Coulomb model. It involves two parameters: the undrained shear strengths in triaxial compression and extension. As such, the model predicts different strengths in compression and extension without introducing any physical anisotropy due to layering, direction of deposition and so on. The model is applied to a number of boundary value problems, where the effects of an extension/compression shear strength ratio less than unity generally turns out to be relatively moderate.

KEYWORDS: clays; geotechnical engineering; solid mechanics

ICE Publishing: all rights reserved

Limitation: $\frac{1}{2} \leq \frac{s_{ue}}{s_{uc}} \leq 1$

Generalized Tresca

 $F_u = s_1 - s_3 + (s_{ue}/s_{uc} - 1)(s_1 - s_2) - 2s_{uc}$

Material		
Name	Tresca Basic	
Material Model	Tresca	~
Color	click to change	
Reducible Strength	Yes	¥
Strength		
Option	Standard	~

Option	Standard
s _u (kPa)	100

Material		
Name	Tresca Basic	
Material Model	Tresca	Ŷ
Color	click to change	
Reducible Strength	Yes	×

Strength		
Option	Generalized	Ý
s _{uc} (kPa)	30	
s _{ue} (kPa)	20	

sue to suc (Won 2013)

Op+um^{ce}

sue to suc (Won 2013)

Op+um^{ce}

sue to suc (Won 2013)

$$F = s_1 - s_3 - (s_1 + s_3) \sin f - 2c \cos f$$

Mohr-Coulomb

$$F = s_1 - s_3 - (s_1' + s_3') \sin f - 2c \cos f$$

Undrained (linear elastic/perfectly plastic, zero dilation):

Mohr-Coulomb

$$F = s_1 - s_3 - (s_1 + s_3) \sin f - 2c \cos f$$

Undrained (linear elastic/perfectly plastic, zero dilation):

Mohr-Coulomb

$$F = s_1 - s_3 - (s_1 + s_3) \sin f - 2c \cos f$$

Undrained (linear elastic/perfectly plastic, zero dilation):

INTRODUCTION

$$F = s_1 - s_3 - (s_1 + s_3) \sin f - 2c \cos f$$

AUS

Mohr-Coulomb

$$F = s_1 - s_3 - (s_1' + s_3') \sin f - 2c \cos f$$

AUS

$$F = s_1 - s_3 - (s_1' + s_3') \sin f - 2c \cos f$$

AUS

$$F = s_1 - s_3 - (s_1 + s_3) \sin f - 2c \cos f$$

AUS

$$F = s_1 - s_3 - (s_1' + s_3') \sin f - 2c \cos f$$

AUS

Mohr-Coulomb

$$F = s_1 - s_3 - (s_1 + s_3) \sin f - 2c \cos f$$

Undrained $(p' = p_0')$

$$F_u = s_1 - s_3 + (s_{ue}/s_{uc} - 1)(s_1 - s_2) - 2s_{uc}$$

 ← Generalized Tresca

Op+um^{ce}

Mohr-Coulomb

$$F = s_1 - s_3 - (s_1 + s_3) \sin f - 2c \cos f$$

Undrained $(p' = p_0')$

$$F_u = s_1 - s_3 + (s_{ue}/s_{uc} - 1)(s_1 - s_2) - 2s_{uc}$$

 ← Generalized Tresca

Op+um^{ce}

AUS

Mohr-Coulomb

$$F = s_1 - s_3 - (s_1 + s_3) \sin f - 2c \cos f$$

Undrained $(p' = p_0')$

$$F_u = s_1 - s_3 + (s_{ue}/s_{uc} - 1)(s_1 - s_2) - 2s_{uc}$$

 ← Generalized Tresca

Op+um^{ce}

sue to suc (Won 2013)

Op+um^{ce}

sue to suc (Won 2013)

Yield surface

Undrained true triaxial tests on NC Edgar Plastic Kaolinite (Lade 1990)

41

Tunnel face stability

Tunnel face stability – blowout

Op+um

Op+um^{ce}

Op+um^{CE}

Op+um^{ce}

Op+um

Op+um

Op+um

Op+um^{CE}

Tunnel face stability – blowout

Op+um^{ci}

Strength predictions

Generalized Tresca:

 s_{uc} : any value ≥ 0

 s_{ue} : any value between $0.5 s_{uc}$ and s_{uc}

 $s_{us} = (0.5/s_{uc} + 0.5/s_{ue})^{-1}$

)p+um[∞]

Strength predictions

Generalized Tresca:

 s_{uc} : any value ≥ 0

 s_{ue} : any value between $0.5 s_{uc}$ and s_{uc}

 $s_{us} = (0.5/s_{uc} + 0.5/s_{ue})^{-1}$

Op+um^{ce}

FIG. 15. Undrained Strength Anisotropy from CK_0U Tests on Normally Consolidated Clays and Silts [Data from Lefebvre et al. (1983); Vaid and Campanella (1974); and Various MIT and NGI Reports]

Op+um^{c∈}

Strength predictions

Karlsrud & Hernandez-Martinez (2013)

Op+um^{ce}

Strength predictions

Karlsrud & Hernandez-Martinez (2013)

Op+um^{ce}

Strength predictions

Karlsrud & Hernandez-Martinez (2013)

- Considerable confusion in the soil mechanics literature
- Sometimes taken to mean different properties in different directions, e.g. vertically vs horizontally
- Sometimes taken to mean different strengths in extension and compression

Op+um^{ce}

Extension/compression

Extension/compression

Extension/compression

Lode angle: θ = -30°

Extension/compression

Lode angle: θ = +30°

Summary

- Different strengths in extension and compression standard feature of isotropic frictional materials
- Strength may depend on direction of load application, e.g. vertically vs horizontally – anisotropy

Extension/compression

Anisotropy

NGI-ADP (Plaxis)

NGI-ADP (Plaxis)

s_{ue}/s_{uc} < 1 for an ideal isotropic material!

Yield surface

Undrained true triaxial tests on NC Edgar Plastic Kaolinite (Lade 1990)

Yield surface

Undrained true triaxial tests on NC Edgar Plastic Kaolinite (Lade 1990)

Anisotropy

Anisotropy

Op+um^{ce}

Anisotropy

Op+um^{ce}

Anisotropy

Op+um

Anisotropy

- 1
- 1
- 1
 _
- 1
- 1
 -1
- 1
- 1
_
- 1
-1
 -
- 1
 -
- 1

Anisotropy

Figure 4.9: Undrained strength anisotropy of Boston Blue clay (Seah (1990))

Anisotropy

Assume cross-anisotropy with plane of anisotropy being ortho to z-axis:

Op+um^{ce}

Strength predictions

Karlsrud & Hernandez-Martinez (2013)

Op+um

Anisotropy – AUS

NGI-ADP approach

Anisotropy – AUS

NGI-ADP approach

Anisotropy – AUS

$$F_{u} = \hat{q} - \frac{6k}{\sqrt{3}(1+1/\rho)\cos\hat{\theta} - 3(1-1/\rho)\sin\hat{\theta}}$$

$$\hat{q} = \sqrt{3}\hat{J}_{2}$$

$$\hat{J}_{2} = \frac{1}{2}\hat{s}^{T}D\hat{s}$$

$$\hat{s} = \boldsymbol{\sigma} - \boldsymbol{m}p - ak\boldsymbol{r}$$

$$\boldsymbol{m} = (1, 1, 1, 0, 0, 0)^{T}$$

$$\boldsymbol{D} = \text{diag}(1, 1, 1, 2, 2, 2)^{T}$$

$$\boldsymbol{p} = \frac{1}{3}\boldsymbol{m}^{T}\boldsymbol{\sigma}$$

$$\boldsymbol{r} = (\frac{1}{2}, \frac{1}{2}, -1, 0, 0, 0)^{T}$$

$$\hat{\theta} = \frac{1}{3} \arcsin\left(\frac{3\sqrt{3}}{2}\frac{\hat{J}_{3}}{\hat{J}_{2}^{3/2}}\right)$$

$$\hat{J}_{3} = \hat{s}_{11}\hat{s}_{22}\hat{s}_{33} + 2\hat{s}_{12}\hat{s}_{23}\hat{s}_{11} - \hat{s}_{23}^{2}\hat{s}_{11} - \hat{s}_{31}^{2}\hat{s}_{22}$$

$$\boldsymbol{y}$$
(a)
(b)
(c)

Three parameters:

- k size
- *a* shift
- ρ shape

Can be related uniquely to three strengths:

- s_{uc} triaxial compression
- s_{ue} triaxial extension
- s_{us} simple shear

Anisotropy – AUS

$$F_{u} = \hat{q} - \underbrace{k}_{\sqrt{3}(1+1)} \cos \hat{\theta} - 3(1-1) \exp \hat{\theta} + 3(1$$

Three parameters:

- k size
- *a* shift
- ρ shape

Can be related uniquely to three strengths:

- s_{uc} triaxial compression
- s_{ue} triaxial extension
- s_{us} simple shear

AUS admissibility

Strength predictions

Karlsrud & Hernandez-Martinez (2013)

Strength predictions

Karlsrud & Hernandez-Martinez (2013)

AUS admissibility

Op+um

AUS

Isotropic: s_{uc} and s_{ue}

Material		
Name	AUS Basic	
Material Model	AUS	Ŷ
Color	click to change	
Reducible Strength	Yes	Ý
Strength		
Option	Isotropic	~
s _{uc} (kPa)	30	
- /-	0.6	

 $s_{us} = (0.5/s_{uc} + 0.5/s_{ue})^{-1}$

Anisotropic: s_{uc}, s_{ue}, and s_{us}

Material		
Name	AUS Basic	
Material Model	AUS	×
Color	click to change	
Reducible Strength	Yes	~
Strength		
Option	Anisotropic	Ŷ
s _{uc} (kPa)	30	
sue/suc	0.6	
sus/suc	0.75	

Op+um

AUS

Anisotropy – AUS

Anisotropy – AUS

Figure 4.9: Undrained strength anisotropy of Boston Blue clay (Seah (1990))

Hardening – AUS

Hardening – AUS

Vardanega & Bolton approach: strain at half the failure load as a hardening param.

Flow rule – AUS

Mises

Elasticity – Hooke

Shear modulus:

$$G \gg 10G_{50} = 10 \frac{s_{uc}}{3e_{c,50}}$$

Parameters

Material		
Name	AUS Basic	
Material Model	AUS	~
Color	click to change	
Reducible Strength	Yes	~
Strength		
Option	Isotropic	~
s _{uc} (kPa)	30	
sue/suc	0.6	
Unit Weight		
γ (kN/m³)	18	
Tension Cut-Off		
Tension Cut-Off	No	~
Stiffness		
Parameter Set	А	~
E _u (MPa)	30	
ες,50 (%)	0.5	
ε _{e,50} (%)	2	
Initial Conditions		
Ko	0.5	

Material		
Name	AUS Basic	
Material Model	AUS	×
Color	click to change	
Reducible Strength	Yes	~
Strength		
Option	Anisotropic	Ŷ
s _{uc} (kPa)	30	
sue/suc	0.6	
sus/suc	0.75	
Unit Weight		
γ (kN/m³)	18	
Tension Cut-Off		
Tension Cut-Off	No	×
Stiffness		
Parameter Set	A	Ŷ
E _u (MPa)	30	
ες.50 (%)	0.5	
ε _{e,50} (%)	2	
Initial Conditions		
Ko	0.5	

Op+um^{ce}

Fit to data

Fit to data

Op+um^{ce}

Op+um^{ce}

Op+um^{ce}

Op+um^{ce}

Monopile (PISA Project)

Conclusions

• AUS: simple model and reliable model easy to calibrate to typical data available from SI data

Op+um

AUS

Conclusions

- AUS: simple model and reliable model easy to calibrate to typical data available from SI data
- Isotropic material: different extension and compression strengths; anisotropy: additional parameter – simple shear strength

Conclusions

- AUS: simple model and reliable model easy to calibrate to typical data available from SI data
- Isotropic material: different extension and compression strengths; anisotropy: additional parameter – simple shear strength
- Both GT and AUS available in OPTUM G2 and OPTUM G3 (<u>www.optumce.com</u>)

Conclusions

- AUS: simple model and reliable model easy to calibrate to typical data available from SI data
- Isotropic material: different extension and compression strengths; anisotropy: additional parameter – simple shear strength
- Both GT and AUS available in OPTUM G2 and OPTUM G3 (<u>www.optumce.com</u>)

Received: 26 November 2018	Revised: 16 May 2019	Accepted: 20 May 2019
DOI: 10.1002/nag.2990		
RESEARCH ART	ICLE	WILEY

AUS: Anisotropic undrained shear strength model for clays

Kristian Krabbenhøft¹ | Sergio Andres Galindo-Torres¹ | Xue Zhang¹ | Jørgen Krabbenhøft²